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Correct Prediction 

AI Prediction: Cerulean Warbler

Incorrect Explanation

"this is a small bird with a white 
belly and a grey head"

Generated Explanation

Incorrect Prediction 

AI Prediction: American Goldfinch

Correct Explanation

"this is a small yellow bird with 
black and white wings and a small 

beak"

Generated Explanation

Incorrect Prediction 

AI Prediction: Yellow-billed 
Cuckoo

Incorrect Explanation

"this is a white bird with a black 
wing and a large black beak"

Generated Explanation

Fig. 1. Different scenarios of imperfect natural language explanations based on model proposed by Hendricks
et al. [19]: correct prediction, incorrect explanation; incorrect prediction, correct explanation; both incorrect
prediction and explanation.

Explainability techniques are rapidly being developed to improve human-AI decision-making across various
human-computer interaction settings. Consequently, previous research has evaluated how decision-makers
collaborate with imperfect AI by investigating appropriate reliance and task performance to design more
human-centered computer-supported collaborative tools. Several human-centered explainable AI (XAI) tech-
niques have been proposed in hopes of improving decision-makers’ collaboration with AI; however, these
techniques are grounded in findings from previous studies that primarily focus on the impact of incorrect AI
advice. Few studies acknowledge the possibility of the explanations being incorrect even if the AI advice is
correct. With recent advancements in large language models (LLMs), post-hoc natural language explanations
are becoming increasingly prevalent. However, LLMs are far from perfect, making it crucial to understand how
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imperfect natural language explanations affect human-AI decision-making. In this encore paper, we summarize
findings from a robust, mixed-methods user study to evaluate how incorrect natural language explanations
influence humans’ decision-making behavior in a bird species identification task, taking into account their
level of expertise and an explanation’s level of assertiveness1. Our findings reveal the influence of imperfect
natural language explanations and humans’ level of expertise on their reliance on AI and human-AI team
performance. We also discuss how these explanations can be deceptive during human-AI collaboration. Hence,
we shed light on the impacts of language models as post-hoc explainers in human-computer interaction and
provide guidelines for designers of human-AI collaboration systems.

CCS Concepts: •Human-centered computing→ Empirical studies inHCI; •Computingmethodologies
→ Artificial intelligence; Computer vision tasks.

Additional Key Words and Phrases: Human-AI Collaboration, Explainable AI, Natural Language Explanation
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1 INTRODUCTION
With the deployment of imperfect artificial intelligence (AI) in high-stakes decision-making sce-
narios, decision-makers struggle with knowing when they should and should not rely on AI
advice, causing frustration and potentially harmful decisions. As a result, designing and developing
human-centered explanations has become a core theme in human-computer interaction (HCI)
research [14, 30, 54]. Tangentially, recent work has proposed new post-hoc explanation techniques
that leverage machine learning models to explain the prediction of another machine learning
model [7, 9, 19, 23, 29, 40, 44, 47, 50, 55, 60]. A subset of these studies propose to exploit language
models to generate natural language explanations for image classifications with the rationalization
that natural language is more “human-friendly” [19, 23, 29, 47]. These approaches to explainability
introduce another level of uncertainty in the collaboration between the decision-maker and the AI,
as language models can hallucinate [44].

HCI, and more specifically human-AI collaboration, is prevalent across high-stakes scenarios [11,
31, 48, 53]. For instance, radiologists collaborate with LLMs to identify abnormalities in medical
imagery and generate impressions from image embeddings [20, 48]; conservationists use AI to help
monitor biodiversity [8], and humanitarian aids use AI to help identify damaged buildings after
natural disasters or armed conflicts from satellite imagery [34, 61]. While some of these human-AI
collaboration scenarios require the human decision-maker to have several years of experience in
the given domain, such as radiology, monitoring biodiversity with the help of AI doesn’t necessarily
require domain expertise [8, 39]. Platforms, such as iNaturalist [1], Merlin Bird App [2], and
Wildbooks from WildMe.org [3], have allowed non-experts (i.e., citizen scientists, hobbyists, or
students) to partake in monitoring biodiversity alongside domain experts (i.e., ornithologists and
conservationists). While these platforms are valuable for non-experts to use, the AI models backing
these platforms are imperfect: They do not always provide correct predictions [28].

Experts and non-experts interactingwith the same imperfect AI and the same type of explanations
in human-AI collaboration scenarios, such as decision-making [42] or learning systems [46], could
result in some users misunderstanding or inappropriately relying on/overriding the AI advice.
Experts may have more context outside of the AI’s classification and confidence that a non-expert
may not have. This might result in experts using their contextual information to appropriately rely
1The encore submission intentionally only focuses on the natural language component of the original study to align more
closely with discussions during the workshop.
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on the AI when advice is provided, such as correctly overriding when wrong AI advice is presented
and correctly using AI advice when it is correct. Non-experts, on the other hand, might not be
able to judge the correctness of the AI advice appropriately as they are missing this contextual
information. For example, for bird species identification, ornithologists tend to be more aware
of information related to the visual differences between the male and female birds for a given
species, the bird’s habitat, and migration patterns, whereas non-experts may not know some or all
of that information. This same situation can arise in radiology where residents (“non-experts”) may
initially be less familiar with certain diseases than an attending radiologist (“experts”). However,
both experts and non-experts can struggle to identify certain instances. In this case, collaborating
with AI can result in complementary team performance (CTP), leveraging the unique knowledge
of both humans and AI, resulting in the human-AI team’s task performance being better than the
human or AI alone [18].

Inappropriate reliance can also occur in the presence of imperfect XAI, a term that we introduce
to represent the phenomenon where an explanation reveals evidence that does not necessarily
comply with the prediction. Papenmeier et al. [38] use the term ‘explanation fidelity’ while Kroeger
et al. [29] use the term ‘faithfulness’ to measure how “truthful” an explanation is. We use imperfect
XAI to align with existing terms, such as imperfect AI, in the HCI community. Specifically, we
define imperfect XAI as explanation techniques that can potentially provide explanations that
do not fit with the AI’s predictions. We view explanation fidelity or faithfulness as a term that
can be used under the umbrella term of imperfect XAI; we view explanation fidelity as referring
to the continuum of explanation correctness, such as when explanations are partially correct.
Imperfect XAI can exist regardless of whether the AI’s advice is correct or not. AI explanations may
oversimplify or improperly estimate complex models in order to make them more interpretable,
deceiving and misleading the human decision-maker. As a result, non-experts may be more prone
to under- or over-relying on AI advice in the presence of incorrect explanations. Within knowledge
transfer scenarios, this could cause the non-expert to learn incorrect information about a given class.
Furthermore, previous research shows that the language tone within natural language explanations
can impact decision-makers [12]. However, the effect of language tone on humans’ appropriate
reliance when interacting with imperfect explanations is underexplored. Therefore, it is necessary
to investigate how the communication style of explanations (e.g., the language tone and the content)
impacts human-AI collaborations across levels of expertise [12, 27].

Collaborating with imperfect AI is not a new concept to the HCI community [18, 28, 31]. Despite
numerous user studies over the years investigating human-AI collaborations and XAI, few have
formally acknowledged the existence of imperfect XAI in their studies [18, 38]. By formally ac-
knowledging the existence of imperfect XAI in human-AI collaboration, research has several new
interesting dimensions to explore. Although numerous user studies seek to understand how humans
align, perceive, and interact with different types of explanations in various human-AI collaboration
scenarios (e.g., [13, 25]), few studies explore the impact that incorrect or “noisy” explanations have
on human-AI collaboration [18, 21, 38, 51]. Recent work has used technical approaches to mitigate
“noisy” or incorrect natural language explanations [21] and Kroeger et al. [29] proposed metrics to
algorithmically evaluate the effectiveness of the generated post-hoc natural language explanations.
However, to our knowledge, no studies investigate how the interaction between the correctness
of explanations and the decision-maker’s level of expertise impact appropriate reliance on AI,
human-AI team performance, and the extent to which AI explanations deceive decision-makers.
With the rapid advancements of LLMs and their growing use in high-stakes decision-making

scenarios, our encore submission echoes the argument from our full paper ( [35]) that it is necessary
to understand how humans interact with natural language explanations that are incorrect, even
when the AI’s advice is correct. We also argue that it is important to understand the relationship
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that the level of expertise and the tone of explanations (i.e., assertive, non-assertive, or neutral) have
on a decision-maker’s reliance on AI. Understanding these dimensions of human-AI collaboration
will provide insight to XAI and HCI researchers. With these topics under-explored in current
literature, we present the following research questions for this encore submission:
RQ1: How does the correctness of explanations affect appropriate reliance on AI, and to what ex-

tent do the decision-maker’s level of expertise and the explanation’s assertiveness moderate
this effect?

RQ2: How is complementary team performance impacted by the correctness of explanations and
the decision-maker’s level of expertise?

RQ3: To what extent do incorrect and correct explanations deceive decision-makers with different
levels of expertise?

2 METHODOLOGY
Human-computer interaction is becoming core to wildlife conservation efforts [10, 16, 49]. While
identifying bird species from images may not be posed as a high-stakes task in our study, this
task is imperative to conserving and managing species and biodiversity [4]. Furthermore, the task
of fine-grained image classification, such as bird species identification, is comparable to higher-
stakes tasks, such as identifying diseases from medical imagery [48]. For example, radiologists
collaborating with an imperfect AI and imperfect XAI to diagnose diseases present in chest X-rays
would go through a similar visual decision-making process as if they were trying to classify an
image of a Bewick Wren in our study interface. Hou et al. [20], Kayser et al. [23] propose natural
language explanations for chest x-rays, similar to the explanation we implement in our study,
which helps bridge our findings between bird species identification and higher-stakes tasks.

2.1 Study Design
To answer our research questions, we design a mixed between- and within-subjects study to
examine various effects of explanations on appropriate reliance. Our study was carefully reviewed
by two experienced birders: one experienced birder is a migration counter for a bird sanctuary, and
the other experienced birder holds a graduate degree in environmental science, conducted research
at a nature center, and worked at a nature conservancy. The procedure of the study follows the
design outlined in Figure 2 and is divided into four different parts (𝐴 − 𝐷), which we explain in
further detail below.
The study begins with part A in Figure 2: In a bird identification test, we assess participants’

expertise in classifying six different species of birds. We distinguish the six bird images based on
their level of difficulty. This level of difficulty is derived from discussions with an experienced
migration counter from a bird sanctuary. While previous work has collected participants’ self-
perception of expertise [25], this method is subjective, and participants may self-perceive their
skills differently. Kazemitabaar et al. [24] measure participants “experience-level” through log data
instead of subjective measures. Similarly, we try to avoid defining expertise subjectively. For the
purpose of our analyses, we identify two different levels of expertise: non-experts and experts.

In the next section of the study (part B in Figure 2), participants are randomly assigned to one of
two explanation types: Natural language explanations or visual, example-based explanations. We
use natural language explanations because the AI model that we used for the study was specifically
designed to generate natural language explanations based on fine-grained image classifications [19].
We will only focus on the findings for the natural language explanations for this encore submission.

The human-AI bird identification task (part C of Figure 2) consists of two phases. For each
treatment condition, the participants are asked to identify the bird species from an image (phase
1). After submitting an initial identification, they are shown the AI’s prediction along with the
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explanation, and again, they have to submit an identification for the bird species in the image
(phase 2). The structure of phases one and two are corroborated with previous work [15]. Initially,
participants must click on a button that shows “Show AI Explanation”. Without revealing the
explanation, the participant cannot proceed to the next question. This is one way for us to ensure
that the participant acknowledges the presence of an explanation. Overall, participants do this
process for twelve different random bird images.

As the AI we are utilizing for identifying the bird species is not perfect [19], the predictions and
explanations provided can be incorrect. To understand how this affects participants’ appropriate
reliance, we ensure that each participant is shown three samples of the following four categories
in random order: correct prediction and correct explanation (CC); correct prediction and incor-
rect explanation (CI); incorrect prediction and correct explanation (IC); incorrect prediction and
incorrect explanation (II).
Overall, participants are shown twelve different bird species. For each of the four categories

we identified, we show three samples where each explanation is framed with a different level
of assertiveness: assertive, non-assertive, or neutral2. As a result, each participant is shown one
assertive, one non-assertive, and one neutral explanation for each category. We ensure that the order
is randomized for each participant. Moreover, we also vary the samples shown, meaning that not
every participant sees the same bird images. This is to ensure that our results are not dependent on
the difficulty of the bird species.

2.2 Data Selection
We create a dataset of bird images and explanations to show participants by manually curating bird
images from the well-established CUB-200-2011 [52] dataset and explanations from the Generating

Human-AI Bird Identification
Randomly Assigned 
(between subjects)

Randomly Assigned (between subjects)
Randomly Assigned (between subjects)

Natural Language 
Explanation

Example-based 
Explanations

Post-survey
Screening 

Test

Shown in randomized order

Classification 
w/ AI & explanation

x 12

assertive 

x 4

Correct prediction; correct explanation

asfasdfCorrect prediction; correct explanation
Correct prediction; correct explanationasdf

Correct prediction; incorrect explanation

Correct prediction; incorrect explanation

Incorrect prediction; correct explanation

Incorrect prediction; correct explanation

Incorrect prediction; incorrect explanation

Incorrect prediction; incorrect explanation

x 3

x 3

x 3

x 3

Shown in randomized order

Bird Species Identification Quiz

3 “Easy” Common birds

3 “Hard” Common birds

Classification 
without AI

non-
assertive

x 4

neutral

x 4

A B C D

Phase 1 Phase 2

Fig. 2. We conduct a rigorous mixed-methods study leveraging a mixed design. Before participants start the
task, they are shown a screening test (A). For the human-AI bird identification task, participants are assigned
an explanation modality (B). During the task, participants are shown explanations with different levels of
assertiveness and different scenarios of correctness (C). Lastly, participants complete a post-survey (D). This
encore submission only focuses on the findings for the natural language explanations.

2Figure 4 provides examples of assertive, non-assertive, and neutral explanations.
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Phase 1 Phase 2

Fig. 3. Example of the two phases for a single bird image that a participant is shown in the study for the II
case.

Visual Explanations model [19]. The original dataset consists of 11,788 images of 200 bird species
and is split into 5,994 training and 5,794 test images. Each bird species is represented with around
60 images of the respective bird class. When curating birds, we first filtered for bird families with
several species in the CUB dataset. We specifically filtered out every bird class that is not a part of
the Warblers, Wrens, Swallows, Sparrows, or Finches/Grosbeaks families. After applying this filter,
we had 1, 864 out of 5, 794 images from the test set of CUB-200-2011. Of those 1, 864 images, 1, 609
were predicted correctly by the AI, and 255 images were predicted incorrectly by the model.

After filtering the bird species, multiple researchers on our team separately classified the natural
language explanations for a subset of the 1, 864 birds as incorrect or correct. Cases of doubt were
discussed by a subset of the research team and excluded from consideration if an agreement was
not met. In total, we identified ten examples for each category3 and explanation type. As a result,
the dataset represents 66 different images and 43 different bird species from the CUB-200-2011
dataset.
We define a correct natural language explanation to be when the explanation aligns with the

description of the predicted bird class. We define an incorrect natural language explanation to
misalign with all or part of the description of the predicted bird class. Thus, an incorrect natural
language explanation contains a factual error. This type of incorrectness is present in different
natural language techniques and is a focus of current research [32, 59]. We use descriptions from
the Cornell Lab of Ornithology All About Birds Guide [? ] to corroborate our classification for
each explanation. Examples of incorrect and correct natural language explanations are provided in
Figure 1.

2.3 Explanation Modalities
The natural language explanations were generated by the model proposed by Hendricks et al. [19].
We followed the PyTorch implementation [5] of Hendricks et al.’s model to obtain the natural
language explanations since the original model from Hendricks et al. was unavailable. After
running the test images through the model, a natural language explanation is generated for each
classification. For example, the natural language explanation for the Magnolia Warbler in Figure 3
is: “this is a grey bird with a yellow wing and a brown stripe on its head”.

3The four categories are identified in Section 2.1.
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Following previous studies [12, 37, 58], we define assertive explanations to include words and
adjectives such as “definitely” and “clearly”. We define the non-assertive explanations to include
words and adjectives such as “might be” and “appears to be”. For the neutral condition, we omit
the adjectives to maintain the same structure of the information being presented. For the natural
language explanations, we append the assertiveness to the beginning of the explanation generated
by the model to read like a sentence. For the non-assertive and assertive conditions, we removed the
text “this is a” from the generated explanation in order to incorporate it into the sentence structure
we designed. The three versions of assertiveness for both explanation modalities are shown in
Figure 4.

This is definitely a {predicted class} 
because it clearly is a {explanation}

This might be a {predicted class}, 
since it appears to be a {explanation}

non-assertive

This is a {predicted class} 
because {explanation}

assertive neutral

Format of Natural Language Explanations

Format of Example-Based Explanations

This is definitely a {predicted class} 
because it is clearly …

This might be a {predicted class}, 
since it appears to be …

non-assertive

This is a {predicted class} 
because it is …

assertive neutral

… similar to the birds in the following three examples

Fig. 4. The three different language tones that an explanation could have regarding assertiveness for the
natural language explanations. Non-assertive explanations included the words “might be” and “appears to
be”. Assertive explanations included the words “definitely” and “clearly”. Neutral explanations did not include
any additional adjectives.

2.4 Recruitment
We recruit the participants through several communication channels that are related to the envi-
ronment and conservation, such as the AI for Conservation Slack, Birding International Discord,
Climate Change AI community forum, WildLabs.net community forum, and Audubon Society
mailing lists. Additionally, we use Prolific with a custom filter to target individuals who currently
work in environment-related fields. Participants receive compensation that is above minimumwage.
After excluding participants who provide incomplete and fake responses (i.e., lorem ipsum response
to our survey question), we have 69 people complete the study for natural language explanations.

2.5 Quantitative Metrics
We quantitatively calculate appropriate reliance across the four dimensions defined by Schemmer
et al. [43]: correct AI reliance, correct self-reliance, under-reliance, and over-reliance. Following
these metrics, we calculate relative self-reliance (RSR) and relative AI reliance (RAIR) to account
for the appropriateness of reliance. We separately measure RAIR and RSR for correct and incorrect
explanations and derive their impact on appropriate reliance. In order to measure this impact,
we propose the Deception of Reliance (DoR) caused by imperfect XAI. In order to measure the
overall deception impact of explanations on humans’ decision-making behavior, we compute the
deception on appropriate reliance by calculating the difference between the Gaussian distance in
the RAIR-RSR space for incorrect and correct explanations. This difference represents the deception
between the correct and incorrect explanations. If the deception is a positive value, then incorrect
explanations are more deceptive; if the difference is a negative value, then correct explanations are
more deceptive. Lastly, as defined by previous work (e.g., [6, 15, 18]), we can calculate the human-AI
team performance to determine if CTP exists. We utilize accuracy as a performance metric. Since
every participant is shown six birds that the AI correctly classifies and six that the AI incorrectly
classifies, the model performance is 50%.
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3 RESULTS
3.1 Participant Statistics
On average, the study takes 24 minutes to complete. In order to distinguish experts from non-
experts, we perform K-means clustering (𝑘 = 2) based on a principal component analysis with two
components for four features from the bird species identification test (part A of Figure 2). These four
features represent participants’ scores in correctly identifying the family and species of the easy
and the difficult bird images. By clustering all of the participants into the expert and non-expert
groups, we end up with 41 experts and 28 non-experts for the natural language explanations.

3.2 Moderation Analyses
In order to test whether humans’ level of expertise and the explanations’ assertiveness moderate
the relation of the correctness of explanations on humans’ appropriate reliance, we conduct several
moderation analyses.

3.2.1 Participants’ level of expertise moderates the effect of the correctness of explanations on RAIR
for natural-language explanations. We model the correctness of explanations as an independent
variable. Accordingly, we model RAIR as the dependent variable. To account for the moderation
effect of the level of expertise and assertiveness, we examine each variable as a moderator and
report the interaction effects with the correctness of explanations. The moderation analysis shows
that the interaction of the level of expertise with the correctness of explanations is significant (coeff
= −1.00, p-value = .05). We observe a negative coefficient. Accordingly, the moderation effect on
the relation of correctness on RAIR is higher for non-experts than for experts. In other words,
non-experts change their initially incorrect decision to align with the correct AI advice more often
than experts do when the natural language explanation is correct. However, there is no significant
effect in the interaction of assertiveness and the correctness of explanations. Thus, we conduct a
regression analysis with the moderators as independent variables to evaluate for a direct effect
of assertiveness as recommended by Hayes [17] and Warner [56]. The results of the regression
analysis show that there is no direct effect between assertiveness and RAIR (coeff = .04, p-value
= .77).

3.2.2 Participant’s level of expertise has a direct effect on RSR for natural language explanations.
In addition to analyzing whether the level of expertise and assertiveness moderate the effect of
explanations’ correctness on RAIR, we conduct the same analyses for the effect of explanations’
correctness on RSR. For RSR, we look at all cases in which the AI prediction is giving incorrect
advice (i.e., the prediction is wrong) and the initial human decision is correct [43]. The moderation
analysis for the natural language explanation shows that there is no significant effect of correctness
on RSR moderated by level of expertise (coeff = −13.33, p-value = .98) and assertiveness (Z1
x corr.: coeff = −.28, p-value = .71; Z2 x corr.: coeff = .90, p-value = .23). Thus, we perform a
regression analysis with the level of expertise and assertiveness as independent variables and drop
the interaction terms. We observe that there is no significant effect of assertiveness on RSR (coeff
= .10, p-value = .58). However, the level of expertise (coeff = 3.18, p-value = .00) has a significant
effect on RSR. With a positive coefficient, this means that experts dismiss incorrect AI advice more
than non-experts when shown natural language explanations. This can also be seen in ??, which
tells us that experts have a higher RSR than non-experts.

3.3 Human-AI Team Performance
The AI’s performance is always 50% because the study was designed to show participants six birds
that the model correctly classified and six that the model incorrectly classified. We see that when
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experts are paired with the AI, their performance improves by 8.74%, performing 6.91% better than
the AI alone. While experts reach CTP, we do not see this for non-experts. However, we see that the
non-experts greatly improve their performance and nearly match the AI’s performance when paired
with the AI. When we only consider cases with correct explanations, the non-experts’ task accuracy
is approximately the same as the AI alone, 48.81%, while the experts maintain complementary team
performance. When only considering incorrect explanations, we still see complementary team
performance for the experts. However, the non-experts’ task accuracy suffers more when shown
incorrect explanations. Non-experts’ task accuracy for natural language explanations is 42.86%.

3.4 Deception caused by Imperfect XAI
Lastly, we compare RAIR to RSR for both levels of expertise and the correctness of explanations.
By measuring RAIR and RSR for incorrect and correct explanations separately, we can calculate
the deception caused by imperfect XAI. We do not explore assertiveness since we do not see any
significant direct or moderation effects. We calculate the deception of reliance separately for RSR
and RAIR: 𝐷𝑜𝑅𝑅𝑆𝑅 and 𝐷𝑜𝑅𝑅𝐴𝐼𝑅 .
We observed that experts have a higher RSR than non-experts for both incorrect and correct

explanations for natural language explanations, validating that experts rely more on their own
initial decisions when AI advice is given. However, we do not see this trend for natural language
explanations. For the natural language explanations, the 𝐷𝑜𝑅𝑅𝐴𝐼𝑅 is positive, meaning that experts
rightly follow correct AI advice more often when provided with correct explanations than with
incorrect explanations. Non-experts have a similar 𝐷𝑜𝑅𝑅𝑆𝑅 , indicating no significant difference in
their RSR between correct and incorrect explanations. Interestingly, for natural language expla-
nations, the incorrect explanations are not as misleading (𝐷𝑜𝑅𝑅𝐴𝐼𝑅 = 0.03, not significant, with a
p-value = 0.68). In general, non-experts have a higher RAIR than experts.

4 DISCUSSION AND CONCLUSION
We investigate how imperfect XAI impacts humans’ decision-making when collaborating with
AI. More precisely, we assess how imperfect explanations affect humans’ reliance behavior and
investigate the effects on human-AI team performance. To answer RQ 1 and RQ 2, we assess the
validity of our research model for natural language explanations. Previous research emphasizes
the need to consider imperfect AI when designing for human-AI collaboration [28]. With recent
research looking into how humans and AI can achieve complementary team performance [6],
Schemmer et al. [43] conceptualize the role of appropriate reliance in human-AI collaboration. We
extend Schemmer et al. [43]’s framework by adding another dimension: XAI advice. Given that an
explanation can be incorrect even if the AI advice is correct, it is crucial to understand the impact
of incorrect XAI advice on decision-making. Furthermore, it is necessary to understand the impact
of imperfect XAI for different types of explanations. Below, we discuss how our contributions are
situated in current literature and the implications for HCI.

In our study, we observe a significant moderation of humans’ level of expertise on the effect of
explanations’ correctness on RAIR for natural language explanations. However, we do not see this
moderation for RSR. When humans are being provided wrong AI advice, their level of expertise
does not moderate the impact of imperfect explanations on humans’ RSR. We identify a direct effect
of the level of expertise on RSR. Overall, our work synthesizes how humans’ level of expertise
impacts their reliance on AI when provided with imperfect explanations. Non-experts rely more
on AI than experts, whereas experts rely more on their initial decisions. Thus, this study sets a
starting point to investigate the effect of imperfect XAI for natural language explanations.

Our findings show that imperfect explanations impact human-AI decision-making. We
observe a difference between reaching complementary team performance when the correctness, or
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fidelity, of the explanation changes. Previous research discusses the impact of explanations’ fidelity
on humans’ reliance on AI and hypothesizes that fidelity has a positive impact on humans’ reliance
behavior on AI [18]. With our results, we confirm this hypothesis. Furthermore, Papenmeier et al.
[38] observe that low-fidelity explanations (or incorrect explanations) impact user trust in AI when
the global model performance is around 75% accurate, which helps validate our findings. We also
observe that the lack of expertise among non-experts impacts their task performance when shown
incorrect explanations regardless of the AI advice being correct. Similar to our findings, Nourani
et al. [36] observe that non-experts tend to over-rely on AI advice, attributing this to their inability
to identify when the AI is incorrect because of their lack of expertise. These findings contribute
to a more integrated understanding of the impact of human-AI decision-making on different user
groups in the presence of imperfect XAI.

The language tone of explanations does not impact humans’ decision-making behavior.
Calisto et al. conclude that the level of expertise influences whether the framing of the explanation
should be assertive or non-assertive [12]. Based on their observations, they specifically suggest
that natural language explanations should be designed such that the tone of the explanation is
appropriate for the end user’s level of expertise. Despite the numerous previous studies finding that
the framing of the explanations has a significant impact on human-AI collaboration [12, 26, 27], our
findings do not show an impact on appropriate reliance. However, given the potential for natural
language explanations to present irrelevant or incorrect information [44], we encourage future
work to explore various ways to alter the presentation of an explanation based on its likelihood to
contain hallucinations.
Our findings can guide researchers and practitioners on assessing and designing for

imperfect XAI in human-AI collaborations. It is important to understand how humans interact
with imperfect XAI. Visual explanations, such as example-based explanations and saliency maps,
have been shown in the past to be of high educational value to the end-user (e.g., [25, 33]), making
it even more important to understand how to design for and mitigate imperfect XAI. This need is
intensified with the role AI takes in organizational learning [46]. Especially in the workplace, AI
can facilitate knowledge transfer and support organizations in retaining and distributing expert
knowledge [22, 45, 57]. Similarly, it is also crucial to understand how imperfect XAI affects the
learning of novices through AI-based learning systems [46] or through collaboration with AI
[41]. Our findings can guide knowledge managers within organizations on how to make use of
explanations for employees with different levels of domain knowledge. More precisely, knowledge
managers should be aware of the impact of exposing humans with different levels of expertise
to imperfect XAI. In addition, our findings contribute to a more integrated understanding of the
impact that incorrect explanations can have on human-AI decision-making and inform different
stakeholders in organizations. As non-experts aremore affected by imperfect XAI, their performance
drops more than experts’ performance when incorrect explanations are provided in comparison to
correct explanations. With this finding, knowledge managers can adjust their knowledge retention
activities when training new employees; designers can adjust the development of human-AI
collaboration systems to successfully facilitate explanations in decision-making and support humans
in their work setting. Thus, we encourage practitioners designing human-AI collaboration systems
to apply our findings to structure their design approach. This can aid organizations in laying out
the strategic direction of human resource development by matching the use of explanations to
humans’ prior knowledge. Overall, these findings shed light on the ongoing discussion in CSCW
on how to make use of explanations within work settings.
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5 CONCLUSION
This encore submission echoes the argument for understanding the impact of imperfect natural
language explanations in human-AI collaboration. Through a mixed-methods study, we empirically
analyze humans’ decision-making and specifically assess whether their level of expertise and
explanations’ assertiveness moderate the effect of imperfect XAI on appropriate reliance. With the
rapid development of large language models and HCI’s increasing adoption of them in human-AI
collaboration settings, we encourage future work and discussions to uncover insights beyond our
findings.
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