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Fig. 1. An example scenario of the guesser round in Eye into AI, where the player is shown an AI explanation
of an image classified as a train. In 1), the player is shown the most salient portions of the image according to
LIME (which we call the top 1 explanation for LIME), and the player incorrectly guesses a ‘boat‘. In 2), the
next most salient portion of the image is revealed (top 2 explanation for LIME), leading the player to guess a
‘house‘. In 3), the top 3 explanation for LIME is shown, leading to an incorrect guess of ‘school‘. Finally, in 4),
the top 4 explanation for LIME is revealed, leading the player to correctly guess ‘train‘.

Recent developments in explainable AI (XAI) aim to improve the transparency of black-box models. However,
empirically evaluating the interpretability of these XAI techniques is still an open challenge. The most
common evaluation method is algorithmic performance, but such an approach may not accurately represent
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how interpretable these techniques are to people. A less common but growing evaluation strategy is to
leverage crowd-workers to provide feedback on multiple XAI techniques to compare them. However, these
tasks often feel like work and may limit participation. We propose a novel, playful, human-centered method
for evaluating XAI techniques: a Game With a Purpose (GWAP), Eye into AI, that allows researchers to collect
human evaluations of XAI at scale. We provide an empirical study demonstrating how our GWAP supports
evaluating and comparing the agreement between three popular XAI techniques (LIME, Grad-CAM, and
Feature Visualization) and humans, as well as evaluating and comparing the interpretability of those three
XAI techniques applied to a deep learning model for image classification. The data collected from Eye into AI
offers convincing evidence that GWAPs can be used to evaluate and compare XAI techniques.

CCS Concepts: •Human-centered computing→ Empirical studies inHCI; •Computingmethodologies
→ Artificial intelligence.

Additional Key Words and Phrases: Games With a Purpose, Explainable AI, Interpretability
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1 INTRODUCTION
Explainable AI (XAI) offers the promise of transparency and the ability to simplify complex AI
models to be interpretable to humans. Transparency and simplicity matter in every phase of the
development of AI systems. AI developers need techniques to ensure that their models align with
their goals; stakeholders need oversight to ensure that the models they deploy behave as expected;
and consumers, the end users of such models, need tools to help them appropriately trust AI when
making decisions. However, while many XAI techniques have been proposed, the few that have been
evaluated beyond anecdotal evidence suggest that end-users over-rely or under-rely on AI [6, 35, 61].
The field needs techniques to accurately assess how interpretable AI explanations are to humans
and to understand where humans and AI explanations agree, using verifiable measurements that
are deployed at scale with actual people. We argue that explanations cannot be evaluated in an
automated manner, as only people can determine if an explanation makes sense for people.
In this paper, we present Eye Into AI, a scalable platform to support valid and verifiable assess-

ments of AI explanations with humans: integrating XAI with games with a purpose (GWAPs).
GWAPs are games designed for humans to play online that generate usable data as a by-product of
gameplay. The GWAP method has been shown to be highly effective in collecting data from large
populations online and validating that data at scale [57]. GWAPs have several advantages over
conventional crowd image labeling, such as not relying on financial incentives [10], interesting
audiences who do not enjoy crowd work but enjoy games [55], and improving engagement with
higher persistence [26].
We argue that explainability is an appropriate and a challenging topic to tackle with GWAP

methods. XAI is an appropriate fit for GWAP efforts because it requires human evaluation at scale
for a task that can be broken down into pieces. Most GWAPs rely on collecting large amounts of
data and then using validation to exclude low-quality data. However, common validation strate-
gies are inappropriate for explainability tasks [17]. For example, in agreement designs, players’
contributions are evaluated based on how similar they are to other players’ inputs on the same
task. For explainability, however, thoughtful and creative interpretations are needed to accurately
assess if they are sensible. Therefore, we instead take an intrinsic validation approach, where the
gameplay choices are closely aligned with the provision of high-quality human subject data [17].
For our problem, this means that providing thoughtful responses to ambiguous visual stimuli is the
optimal way to play.
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Specifically, we developed Eye into AI as an evaluation tool that researchers can use to compare
and improve XAI techniques. To determine whether Eye into AI can be a successful evaluation tool
for XAI, we address several open research questions:
• RQ1. How can Eye into AI help researchers understand the agreement between XAI techniques

and humans? As a result, Eye into AI can provide data to help researchers improve and optimize
their XAI techniques.

• RQ2. How can Eye into AI help researchers identify which technique is more interpretable
than another? As a result, researchers will be able to assess which XAI techniques lead to
better decisions.

• RQ3. How scalable can Eye into AI be for evaluating the interpretability of XAI techniques
and the agreement between interpretability techniques and humans? The answer to t his will
confirm the scalability of this technique for researchers interested in evaluating and comparing
XAI techniques using human subjects.
To address these research questions, we conducted an initial empirical study on Eye into AI

with 50 participants to evaluate XAI techniques on GoogLeNet [53], a deep neural network for
image classification. Our study generated data for three XAI techniques for this model: LIME [42],
Grad-CAM [48], and Feature Visualizations [36]. We identify our core contributions below:
• A novel, playful GWAP to evaluate and compare the interpretability of different XAI

techniques and the agreement between XAI techniques and humans on image classification
tasks.

• We performed an initial empirical study using a GWAP to evaluate the interpretability
of and agreement between XAI techniques and humans applied to GoogLeNet, a deep
neural network for image classification.

• We identify how the data generated by Eye into AI can help researchers compare the inter-
pretability of different XAI techniques.

2 RELATEDWORK
Using games to collect valid data on crowd-sourcing platforms is a well-established strategy. We
provide a brief introduction to the Games With a Purpose literature and how our contribution
complements this research area. Furthermore, several XAI techniques have been proposed to
provide insight into the AI’s prediction. As a result, researchers in human-computer interaction
conducted empirical studies to evaluate the interpretability of different techniques and their impact
on decision-making. While there are several different XAI techniques, we will only present the
three techniques that we used in our game. The three techniques that we chose to use are all
different from each other in terms of the methods used to produce the explanation. We will also
discuss several empirical studies evaluating XAI techniques.

2.1 Games with a Purpose
Games With a Purpose (GWAPs), also known as Human Computation Games, are a genre of
games designed to leverage human computational abilities online [39, 41]. These games make
boring tasks more interesting, such as turning image labeling into a playful experience [18, 57]. A
GWAP perspective provides benefits over conventional crowd-based tasks. First, GWAPs motivate
large-scale participation without relying on financial incentives [10]. In particular, they can activate
audiences who might not participate in crowd-work but enjoy game-play [55]. Second, framing an
activity as a game improves engagement, leading to higher persistence [26]. Finally, XAI tasks are
not a good fit for common data validation strategies, such as similarity to other players’ inputs.
Instead, thoughtful and creative interpretations are needed. A GWAP framework allows us to take
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an intrinsic validation approach, where game-play choices are highly aligned with the provision
of high-quality human subject data [17]. For our domain of image classification, this means that
providing thoughtful responses to ambiguous visual stimuli is the optimal way to play.
From a design perspective, GWAPs involve action, verification, and feedback mechanics [51].

Action mechanics allow the player to solve the human computation problem at hand; verification
mechanics collate player data into task-relevant outcomes, including identifying whether the
players are providing good data; and feedback mechanics, as the name suggests, provide feedback
to players on both their in-game behavior and their task outcomes [50].

GWAPs are varied in their design, and innovation in this space is ongoing. For example, Pe-Than
et al. describe a taxonomy of GWAPs that reflects differences in areas such as how the agreement
between players is calculated, what incentives are used to foster participation, and whether players
can directly interact with one another [39]. Several groups have studied the effects of single- and
multi-player GWAPs, as well as competitive and collaborative scoring systems [40, 49]. GWAPs rely
on eliciting high-quality player contributions, for example, through intrinsic design methods [17],
while weeding out bad data [39]. Explainable AI, however, does not typically consider how to obtain
high-quality data from participants [1]. Expanding research on eliciting high-quality data, therefore,
expands the fields of both GWAPs and XAI. Additionally, this challenge is particularly important
for GWAPs that address XAI, because there is no ground truth other than player understanding.
The metrics for evaluating the success of a GWAP include both task metrics, such as how many
tasks were completed in a given period of time, and player engagement metrics, such as how often
players return to play again [51]. Success in these metrics is critical for a GWAP, as the games must
provide both good data and a good player experience - otherwise, they have failed to make human
computation fun.

2.2 Explainable AI Techniques
Explainable AI (XAI) is commonly defined as making an AI’s decision easy to understand by
people [13]. Computer vision tasks, such as image classification or object detection, employ deep
neural networks (DNNs) that are quite difficult to interpret without XAI techniques. One approach
to make black-box models more transparent and interpretable is to develop post-hoc explanations
to explain a single prediction, known as a local explanation [34]. There are several types of local
explanation techniques to choose from when explaining an individual prediction, such as model-
agnostic or pixel attribution techniques.
Local interpretable model-agnostic explanations (LIME) is a model-agnostic method that ap-

proximates predictions from black-box models through surrogate, interpretable models [42]. For
image data, it shows grouped regions, or superpixels, of an image to highlight the most important
superpixels that contributed to the classification of the image. Alternatively, Grad-CAM is a pixel-
attribution method that is based on feature maps generated by the last convolutional layer [48].
The resulting saliency map will identify the features in the image that contributed the most to the
prediction. As a result, Grad-CAM is visually distinguishable from LIME, as Grad-CAM’s saliency
maps highlight connected regions by definition, whereas LIME’s superpixels are not necessarily
contiguous.

Aside from local explanations, there are global explanations that provide insight into the average
behavior of the AI [2, 34]. One example of a global explanation is to show the features that the
neural network learned through generative examples, known as feature visualizations (FV) [36].
These explanations are abstract representations and do not reveal regions of the original image like
LIME and Grad-CAM.
These three XAI techniques are evaluated in our empirical study of Eye into AI as

they are distinctly different from one another in terms of methods and visual outputs.
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We evaluate local and global techniques to ensure the extensibility of our system for different
techniques. The techniques that we evaluate in our empirical study are also highly cited and
have open-source implementations that are popular with researchers and practitioners. However,
Eye into AI was designed to be extensible to support additional XAI techniques and any image
classification model as well.

2.3 Evaluating Explainable AI Techniques
Initial evaluations in human-computer interaction have suggested that explanations have value
to users relying on machine learning [52]. Interactive visual analytic systems also offer promise
in explaining complex AI by providing interaction techniques to reveal insights about decisions
[19]. Various visual systems have been developed to help users understand AI algorithms, such as
[20, 23, 38, 60]. However, these evaluations typically focus on task-specific tools for a small number
of users. Our proposed GWAP, Eye into AI, intends to provide a verifiable approach to evaluate
XAI at scale.

Explainable AI attempts to make AI more transparent and interpretable by attempting to expose
the features that led to an AI prediction. As decision-makers increasingly need to understand the
models driving the AI [12, 29], there is a new trend towards making AI algorithms fair, accountable,
transparent, and interpretable [1]. This trend has become especially popular within the field of
human-computer interaction, where researchers have taken a human-centered approach to design
and evaluate XAI techniques [14, 15, 22, 25, 32].

2.3.1 Evaluation Metrics. Several studies have designed quantitative metrics based on machine
performance to evaluate and compare the “performance”, or interpretability, of XAI techniques [27,
28, 45]. For example, Lin et al. measure the performance of multiple local XAI techniques based
on “impact score” by generating counterfactuals (i.e., the same image without the most salient
region present) and measuring how the absence of the most salient region affects the prediction
and confidence of the model [28]. If the absence of the most salient region significantly impacts the
model’s prediction and confidence, then the XAI technique highlighted an impactful region.
Previously, most works on explainable AI focused “on new algorithms of XAI rather than on

usability, practical interpretability and efficacy on real users” [63]. However, in the past few years,
numerous studies have focused on evaluating XAI techniques using human-centered methods [4,
22, 30, 33, 59, 62]. Similar to our empirical study, Zhang et al. seek to understand how humans
and machines align on an image classification task by evaluating how a post-hoc explanation for
three different architectures compares to regions that humans view as most important to the image
class [62]. As a result, their main contribution is an understanding of how humans align with the
post-hoc explanation for the three architectures they evaluated. Opposite of Zhang et al. [62], we
evaluate three different XAI techniques on one architecture in our empirical analysis. Recently, Kim
et al. designed a framework to capture how interpretable different XAI techniques are to humans
through two metrics: “level of agreement”, and “ability to distinguish between correct and incorrect
predictions” [22]. This study provides a framework to evaluate four different XAI techniques. H
owever, their framework does not use a GWAP approach.

2.3.2 Evaluating XAI through GWAPs. GWAPs have been used for a range of human computation
problems, such as generating descriptive labels for music [24], disambiguating words in natural
language processing [47], marking segments in text [31], and folding proteins [10]. However, to
date, very fewworks have used a GWAP approach to evaluate and compare XAI techniques. Perhaps
the most similar GWAP to Eye Into AI is Peek-a-boom [58], which aims to collect training data
for computer vision tasks by having a certain player (Peek) try to guess a word based on parts
of an image revealed by a different player (Boom). Instead of revealing parts of an image to help
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users guess the image like Peek-a-boom [58], our game allows players to reveal and guess using AI
explanations to help researchers evaluate XAI techniques. Another GWAP, called FindItOut [5],
shares similar challenges and goals to Eye into AI: collecting high-quality data from players to
improve downstream AI tasks. Resulting player data from FindItOut can be useful in understanding
commonsense question-answering, while player data from Eye into AI can be in understanding
XAI techniques. However, very few GWAPs have tackled the problem of explainable AI [39, 51, 56].
Tocchetti et al. propose a GWAP framework that allows researchers to teach non-experts about
explainability topics as well as collect data to, “evaluate and enhance the explainability of black-box
models” [56]. While the authors’ goals are very similar to those of Eye into AI, their contribution
focuses on collecting data to evaluate XAI techniques rather than demonstrating how to use a
GWAP to evaluate XAI techniques. One study proposes using a GWAP-like approach to directly
compare several different saliency map techniques [30]. They increasingly reveal more portions of
an image until the crowd worker can guess the correct image class. While this study is inspired
by concepts from “Peek-a-Boom” [58], a GWAP, their work is not designed to be a game like our
contribution. Also, unlike our contribution, Lu et al. do not ask crowd-workers to select explanations
for a given image to determine the interpretability of a technique [30]. While this study includes
a random baseline in the evaluation, a random baseline for each XAI technique is not included.
Having a random baseline for each technique can help measure the importance of actual versus
random explanations. For example, are players able to guess the correct answer due to the visual
presentation of the XAI technique?

3 DESIGNING EYE INTO AI, A GWAP FOR XAI
We have developed Eye Into AI, an XAI assessment game that focuses on deep learning models and
post-hoc XAI techniques for image classification. This task was chosen because interpretability
is critical for ensuring reasonable classifications when deployed in real-world settings, as well
as for ensuring that there are no harmful biases present in the models. For example, LIME [42],
Grad-CAM [48], and Feature Visualizations [36] are popular XAI techniques used by researchers
and practitioners to measure how interpretable an image classification model might be. These
techniques can yield intuitive, and occasionally beautiful, visual representations that provide
clues that the neural network may be behaving properly, making "the hidden layers of networks
comprehensible" [7]. However, in practice, such examples of XAI are often handpicked by model
builders to demonstrate the efficacy of the network to stakeholders. Therefore, these examples
may not provide verifiable evidence that the neural network is performing as expected, as it is
difficult to assess the scope and quality of such explanations [3]. Therefore, we identified image
classification as a fruitful area for which to design scalable validation techniques with GWAPs.

To develop our prototypes, we used best practices from GWAP design [51] along with Culyba’s
Transformational Framework [9]. The latter supports game designers in ensuring their design
decisions align with a game’s transformational outcomes. We identified the following as key design
goals:

• Players can generate relevant data for explainable AI
• Providing accurate data is the most effective way to play the game
• Data provided by players is copious and timely

To embody these goals in a playable game, we designed a GWAP that involves players taking on
multiple roles: an explainer and a guesser.
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12
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Fig. 2. During the explainer round, the player takes on the role of an explainer and is provided a source image
to explain. The player selects four images that they feel best explain the class of the image (i.e., parrot). The
explanation shown here represents the XAI technique LIME.

3.1 The Explainer Role
During the explainer round, the player acts as the explainer with the goal of choosing explanations
that will help a future player guess the correct answer as fast as possible. The explainer round
begins with the game offering the player several categories of images (e.g., instruments, fruits, sea
animals) from which they can choose an image that aligns with their interests or curiosities. Upon
selecting an image, the explainer is shown ten explanations from an XAI technique. Unbeknownst
to the explainer, the best five explanations and worst five explanations (according to the technique)
are shown in random order. The goal for the explainer is to create an ordered set of the top four
explanations that they believe would allow a future player to correctly guess the original image they
selected. For example, in Figure 2, the explainer is shown ten explanations from an XAI technique
(LIME), and they have to select the top explanations that they believe will lead other players to
guess the correct answer, parrot. The explainer rounds generate quantitative data that can be used
to understand how humans agree with the XAI techniques being used.

3.2 The Guesser Role
After the players finish their Explainer round, they will have two rounds as a Guesser. One round
shows top explanations from an XAI technique, and the other round shows random explanations as
a baseline for the same XAI technique. As a guesser, the players attempt to guess the class predicted
by the AI as fast as possible. They receive one explanation to start, with a new explanation revealed
every ten seconds until they see a total of four visual explanations. The visual explanations for LIME
and Grad-CAM are superimposed to build on top of the previous explanations (as seen in Figure 1),
while the visual explanations for FV are presented side-by-side in a row. The fewer explanations
revealed before a guesser guesses the correct answer, the more points they are awarded. If the
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guesser is unable to guess the image after all four visual explanations are revealed, they receive
a textual hint of the category the image fits in. The textual hints were presented to users in the
following format: “It’s a type of [category]”, where category is one of the seven categories that we
coded the image as (refer to Section 4.1). If the guesser is still unable to guess the correct answer,
they are shown a multiple choice question listing four possible answers — of which only one is
correct. The guesser receives a reduced number of points with these hints. The guesser rounds
generate quantitative data that can be used to evaluate the interpretability of the XAI techniques
being used.

3.3 Collecting XAI Assessment Data
The game generates relevant data for explainable AI in two ways. First, the explainer is given ten
visual explanations to select from, of varying explanatory quality as judged by XAI techniques,
but they are only allowed to choose four. They must also select the order in which the images are
shown, with the most helpful explanation first. In the instructions for the explainer round, players
are told to, “Choose features that will be given as hints to other players”.
Second, the text of the guesses provides data on what each guesser hypothesizes each image

to be and which explanations helped them guess correctly. Providing accurate data is the best
way to play this game because guessers are rewarded with points for getting the right answer.
In particular, the design motivates players to get the right answer early so they can receive the
maximum number of points. As a result, guessers provide copious and timely data: they can guess
as often as they want with no penalty, supporting copiousness, and there is a time limit, keeping
their responses timely.

4 EMPIRICAL STUDY: CROWD-SOURCED EVALUATIONS OF EXPLAINABLE AI
Our research explores whether GWAPs can provide meaningful assessments of XAI techniques. To
achieve this goal, we deployed Eye Into AI to a) produce an initial dataset from gameplay and b)
analyze the dataset to understand the impact of specific XAI explanations on players’ ability to
identify what class the AI predicted for the image. In previous research, GWAPs have been shown
to be highly effective at collecting data from large crowds. We believe GWAPs can also be effective
for assessing XAI techniques embedded within the game, supporting the following hypotheses:

H.1 By collecting self-ranked regions of importance and measuring agreement, we hypothesize
that Eye into AI can help researchers quantitatively reveal which techniques humans agree
with and which techniques are less intuitive . This information can provide data to help AI
researchers improve and optimize their XAI techniques.

H.2 We hypothesize that Eye into AI can help researchers rank the interpretability of techniques
quantitatively by measuring exposure and the number of explanations required to lead to a
correct interpretation. This will allow researchers to assess when XAI explanations lead to
better decisions.

H.3 Finally, we hypothesize that data collected from Eye into AI is scalable even if players have
little knowledge of AI or the image classification task at hand by measuring copiousness .

In this experiment, we are only evaluating the interpretability of LIME, Grad-CAM, and FV on
one popular deep neural network, GoogLeNet [53], a model for image classification. GoogLeNet is
a common architecture in many standard machine learning frameworks and has been identified
as a top performer in image classification challenges [44]. Although our study is limited to one
model, these results demonstrate how our GWAP can be applied to other popular models and XAI
techniques.
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Eye into AI Game

x 3

Explainer Round

Select 4 of the most representative 
visualizations of the parrot for hints

Agreement  
Metric

LIME

GradCAM

FeatureViz

Randomize

Guesser Round

Guess the original image!

It’s time to guess, go, 
go, go!

LIME

GradCAM

FeatureViz

Technique from 
Explainer Round

x 2

Exposure 
Metric

Copiousness 
Metric

&

Randomize

LIME Baseline LIME

Fig. 3. Design of our empirical study. The left half of the figure shows the explainer round and the resulting
metric (i.e., agreement metric) from the data collected for each technique. The right half of the figure shows
the guesser round and the resulting metrics from the data (i.e., exposure metric and copiousness metric)
collected for each technique and baseline.

Recruitment: In order to have participants play our game, we created a study on Prolific, a
crowd-sourcing platform, to serve as a mechanism to compensate participants. We collected results
through Prolific from 50 participants (Mage = 33.4, SDage = 11.6; 37 female, 13 male) who have
English as their first language, currently reside in the United States, have an approval rate
of at least 95%, and have a minimum of 50 submissions. Each worker was compensated $1.60
USD for their participation; Prolific reported an average pay of $9.50 USD per hour. Participants
were assigned an anonymous ID for analyzing their responses and, on average, took 12 minutes
to complete the game. To incentivize active, high-quality participation, we offered a bonus of $1
USD for those who scored within the top 50% of all participants. Out of the 50 participants, 25
participants received bonuses.

EvaluationMetrics:We use three metrics, summarized in Figure 3, to analyze the data generated
from players to understand the effectiveness of Eye into AI as an evaluation framework and the
effectiveness of different XAI techniques. First, we measure agreement between explainers and the
XAI techniques, inspired by Kim et al. [22]. This allows us to understand if the explanations that the
explainers thought were most useful were also the explanations that the XAI techniques determined
as most useful. Second, we measure exposure, or howmany explanations were needed to be revealed,
in order for the guesser to correctly guess the image class. This metric is inspired by a previous
crowd-sourcing study for XAI [30]. Exposure allows researchers to rank the interpretability of a
given technique. Finally, we measure copiousness, or how many guesses a player had, even if they
did not end up getting the correct answer.

4.1 Image Selection
For our prototype, we created a dataset of 39 different images based on ImageNet [11] classes
that fit into one of seven categories: land animals, sea animals, fruits, vegetables, instruments,
transportation, and electronics. Each category had between five to seven images total representing
different classes. The images were selected from the Creative Commons collection of Flickr. Each
image was selected based on two criteria: (1) there is only one object in the image, and (2) the
image has a clear, unambiguous class as determined by the authors. Similar to Zhang et al. [62], we
selected images that the AI correctly classified.
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Feature	Visualizations

Top	1 Top	2 Top	3 Top	4 Top	5

Bottom	1Bottom	2Bottom	3	Bottom	4Bottom	5

LIME

Top	1 Top	2 Top	3 Top	4

Bottom	1Bottom	2Bottom	3	Bottom	4

Top	5

Bottom	5

Bottom	5

Grad-CAM

Top	1 Top	2 Top	3 Top	4

Bottom	1Bottom	2Bottom	3Bottom	4

Top	5

Original Image

Explainable AI Technique

Fig. 4. Example explanations for an image of a parrot. Top shows explanations generated by LIME; the
middle shows explanations generated by Grad-CAM; the bottom shows explanations generated by the feature
visualization technique.

4.2 Explanation Generation

To create explanations for the game, we used three popular XAI techniques: LIME [43], Grad-
CAM [48], and Feature Visualizations (FV) [36]. An example of each explanation for an image of a
parrot is shown in Figure 4.

All explanations were generated using the last convolution layer of GoogLeNet, inception5b [53].
For LIME and Grad-CAM [16], we generated one explanation for a single image based on
the top prediction for that image. We partitioned the explanation into ten explanations: the
top five explanations and the bottom five explanations. The top five explanations represent the
most salient regions of the image, and the bottom five represent the least salient regions of the
image. For LIME, the explanations were assigned a rank based on the weight of the superpixel for
the prediction. For Grad-CAM, each pixel is given an importance ranking, and we binned pixels
based on those rankings (e.g., the top explanation is the top 10% pixels, the second is the top 10-20%
of pixels, and so on). This experimental setup ensures that LIME and Grad-CAM reveal the same
amount of pixels for each XAI technique.
Unlike LIME and Grad-CAM, which reveal salient portions of the original image, FV algorith-

mically generates a synthetic image that maximizes a particular neuron [36]. For FV, we used
channel attribution [37] to generate explanations for the top five most activated neurons as well
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Select random 
image

Generate 
Explanation

Select another 
image

Apply 
Explanation

Select top 
10%

Fig. 5. Pipeline to generate explanations for baseline Grad-CAM. We generated a saliency map for a random
image from our dataset and then applied that saliency map on top of another image to generate a random
baseline for Grad-CAM.

as the five least activated neurons for the top prediction. The FV explanations were generated
using the mixed4d layer of GoogLeNet [54], as neurons in that layer were shown to be semantically
meaningful [37]. As FV does not reveal pixels but instead generates a synthetic representation, it is
not feasible to constrain by pixels as we did for LIME and Grad-Cam.
We created random baselines for each XAI technique (LIME, Grad-CAM, and FV) to confirm if

XAI techniques are better than showing a random explanation. A random baseline is also used in
Peek-a-Boom [30], which motivates why we chose to include random baselines in our empirical
study. To create the random baselines for LIME, we selected eight random superpixels that were
identified for a given image. Five images had fewer superpixels than the other 34 images, so there
are only seven random explanations instead of eight for those five images. However, during the
game, only four random explanations are selected to be shown out of the seven or eight total
random explanations. We ensured that each superpixel represented approximately 10% of all pixels
to be consistent with the amount of the image being shown for Grad-CAM, which is why we ended
up with seven or eight superpixels in total. To create the random baselines of Grad-CAM, we used
the last convolutional layer in GoogLeNet to generate a feature map for a random image from our
dataset and applied the resulting saliency map on top of the primary image. For example, in Figure
5, the heatmap of an image of a bell pepper was masked on top of an image of a parrot to get the
top and bottom explanations.

To create the FV random baselines, we randomly selected ten of the 528 neuron explanations
from layer mixed4d. We excluded explanations that were algorithmically ranked by channel attri-
bution [37] as the top five explanations and the bottom five explanations for that image.

4.3 Game Flow
Participants played the game three times, one for each XAI technique. The order of techniques
across games was assigned randomly. Each game began with one explainer round and two guesser
rounds. Of the two guesser rounds, they are also randomly ordered: one features the top results of
that game’s XAI technique, and the other features the corresponding random baseline. After the
participant plays through the game all three times, they are asked to complete a survey with nine
questions.

5 EMPIRICAL STUDY RESULTS
We present the results of our empirical study evaluating the interpretability of the three XAI
techniques with GoogLeNet [53] using Eye into AI. This empirical study was conducted to gather
an initial dataset of results from the game to answer our three hypotheses. We note that this
particular study only used images that the model correctly classified, but the game is extensible to
capture data for when the AI is incorrect as well. The results presented below are only described to
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Fig. 6. Measuring agreement between the explainer and the XAI technique. The percentage of participants
who selected each type of explanation as one of their four selections.

demonstrate the capabilities of Eye into AI. We identify how the data from our empirical study
support our three hypotheses.

5.1 Hypothesis 1: Measuring agreement between humans and XAI
As described in Section 3.1, players select, in order, the top four explanations that they think are
the most representative of the image (e.g., Figure 2). To determine if and how Eye into AI can
help researchers identify the agreement between humans and XAI techniques (H.1), we measure
agreement between explainers and the XAI techniques. More specifically, we analyze the number
of players who selected an explanation ranked high or low by LIME, Grad-CAM, and FV. To
determine the statistical significance of a participant selecting a top-ranked versus a bottom-ranked
explanation, we aggregated the ten explanations to fit into two categories: top or bottom. Within
these two categories, top and bottom, we represent how many explanations in each category
a player selected. We utilize a Mann-Whitney U test with Benjamini-Hochberg corrections to
determine statistical significance as the results do not have a normal distribution.
As seen in Figure 6, we observed that the players had a higher level of agreement for the

top-ranked explanations with LIME and Grad-CAM than FV. 86% of the selected explanations
for Grad-CAM were top-ranked explanations, while only 14% of the selected explanations were
bottom-ranked explanations (𝑝 < 0.001). For LIME, 68.5% of the selected explanations were top-
ranked explanations, while 31.5% of the selected explanations were bottom-ranked explanations
(𝑝 < 0.001).

The results from the participants suggest that this task was more challenging for FV. As one
participant remarked about FV, “...the [explanations] were nothing like what the object was. The
[explanations] for strawberry were colorful paintings of animals, for instance.” Indeed, only 59%
of the explanations selected by players for FV were top-ranked explanations. Less than half (41%)
of the selected explanations were bottom-ranked explanations. Nonetheless, a Mann-Whitney U
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test shows that there is a statistically significant difference between the number of top-ranked
explanations selected versus bottom-ranked explanations for FV (𝑝 < 0.001), which showed players
could clearly differentiate these groupings.
By gathering quantitative data generated from playing Eye into AI, researchers can use the

agreement metric to measure and compare the agreement between humans and various XAI
techniques through statistical tests and visualizations, which supports H.1 and provides evidence
that researchers can use Eye into AI for this type of analysis (RQ1).

5.2 Hypothesis 2: Measuring exposure to rank the interpretability of XAI techniques
We measure interpretability using Kim et al.’s definition that “a method is interpretable if a user
can correctly and efficiently predict the method’s results” [21]. Within the guesser round, players
were shown up to four explanations to help them determine the predicted class of the image that
was revealed to them. Every player did this for each XAI technique (i.e., LIME, Grad-CAM, and FV)
and each baseline technique. To determine if and how Eye into AI can help researchers rank the
interpretability of techniques (H.2), we measure exposure of explanations. Specifically, we measured
the number of participants that guessed correctly when shown a certain number of explanations.
The data for these analyses meet the following conditions: (1) the distribution of the data is not
normal, (2) it follows a Likert or ordinal scale, (3) the data do not have equal variances, and (4)
the observations are independently sampled. In this case, we performed a Kruskal-Wallis test and
Dunn’s post-hoc test using the Benjamini–Hochberg correction method to determine the statistical
significance of the differences among the explanation techniques.

5.2.1 Measuring exposure allows for the comparison of interpretability techniques. The top expla-
nation generated by LIME and Grad-CAM aims to represent the most salient region of the image
for the model’s prediction. In Figure 7, 54% of the participants were able to guess correctly when
shown the top explanation generated by Grad-CAM, compared to 36% with LIME. Recall that LIME
and Grad-CAM are visually distinct and algorithmically different from one another, resulting in
different pixels for the same image being shown for the explanation. Dunn’s post-hoc test shows
that this difference observed between LIME and Grad-CAM is statistically significant (𝑝 < 0.05).
Grad-CAM and LIME are statistically significantly different from FV and all three baselines in

Table 1. These results suggest that Grad-CAM is significantly better than LIME and FV. Further,
LIME is significantly better than FV and the baselines. Players agreed in the post-game survey, as
one participant shared, “The one that shows bits of the photos themselves [were easiest].”

Players performed significantly worse on random baselines for LIME and Grad-CAM in terms of
correctly guessing the image when shown only the first explanation. Dunn’s test shows statistical
significance between LIME and baseline LIME (𝑝 < 0.001) and between Grad-CAM and baseline
Grad-CAM (𝑝 < 0.001). Figure 7 shows that only 8% of the players were able to get the correct
answer when shown only the first explanation for the baseline Grad-CAM while 54% of the players
were able to get the correct answer when shown the first explanation for Grad-CAM. Similarly,
only 6% of the players got the correct answer when shown the first explanation for baseline LIME,
while 36% of the players got the correct answer when shown LIME.

Table 1 shows that Grad-CAM is significantly better than LIME, FV, and all baselines after a
single explanation. Further, LIME is significantly better than FV and the baselines. Notably, FV
does not perform significantly better than any random baselines.

While the players did a decent job at correctly guessing the image class when shown LIME and
Grad-CAM, they struggled to determine the image class when shown FV explanations. Dunn’s
post-hoc test (Table 2) shows there is a statistically significant difference between the number of
participants who guessed correctly when shown up to four explanations generated by LIME versus
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Table 1. Dunn’s post-hoc test with the Benjamini-Hochberg correction method for determining statistical
significance between XAI techniques when only shown first explanation.

Comparison P.unadj P.adj
Grad-CAM - LIME 0.02 0.03
Grad-CAM - B_LIME <0.001 <0.001
Grad-CAM - FV <0.001 <0.001
Grad-CAM - B_FV <0.001 <0.001
Grad-CAM - B_Grad-CAM <0.001 <0.001
LIME - FV <0.001 <0.001
LIME - B_FV <0.001 <0.001
LIME - B_LIME <0.001 <0.001
LIME - B_Grad-CAM <0.001 <0.001

when shown explanations generated by FV (𝑝 < 0.001). There is also a statistically significant
difference between the number of participants who guessed correctly when shown explanations
generated by Grad-CAM versus when shown explanations generated by FV (𝑝 < 0.001). As one
participant remarked, “The abstract [FV explanations] were almost impossible to guess. They were
too abstract.”

As seen in Table 2, there was no statistical significance between the performance of the guessers
when shown explanations for FV and the random baseline of FV (𝑝 = 0.09). However, it should be
noted that only one participant out of 50 guessed correctly based on the random baseline, whereas
ten participants out of 50 guessed correctly when shown the explanations for FV (Figure 7). We
suggest future work to validate whether a larger participant pool would result in a statistically
significant difference between the top explanations for FV and the random baseline.
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explanation for a given explanation technique.
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Table 2. Dunn’s post-hoc test with the Benjamini-Hochberg correction method for determining statistical
significance between XAI techniques when shown 1-4 explanations.

Comparison P.unadj P.adj
Grad-CAM - LIME 0.23 0.26
Grad-CAM - B_LIME <0.001 <0.001
Grad-CAM - FV <0.001 <0.001
Grad-CAM - B_FV <0.001 <0.001
Grad-CAM - B_Grad-CAM 0.02 0.02
LIME - FV <0.001 <0.001
LIME - B_FV <0.001 <0.001
LIME - B_LIME 0.03 0.04
LIME - B_Grad-CAM 0.23 0.25
FV- B_FV 0.07 0.09
FV- B_Grad-CAM <0.001 <0.001
FV- B_LIME 0.01 0.02

By gathering quantitative data generated from playing Eye into AI, we observed that researchers
could use the exposuremetric to measure and compare interpretability techniques through statistical
tests and visualizations, which supports H.2 and answers RQ2.

5.3 Hypothesis 3: Eye into AI is a scalable XAI evaluation method
After the participants played three rounds of Eye into AI, they took a survey with several questions
on a 5-point Likert scale (strongly disagree, disagree, neutral, agree, and strongly agree), as well as
a few open-ended questions. Our goal was to capture details about their game experience and any
prior knowledge of AI. We only report results from the survey that we believe are most beneficial
to understanding the game and the players’ perceptions of it1.
From the survey, we found that 70% of the players do not consider themselves knowledgeable

about AI. Nonetheless, 80% of the players thought it was clear how to play the game. These findings
support our third hypothesis that an XAI GWAP can be played by non-experts, which in turn
supports the scalability of our method.

We also asked players if they would like to keep playing the game, a proxy question that game
designers use to measure enjoyment [46]. 70% of the players agreed or strongly agreed with this
statement. Finally, players had the opportunity to optionally provide any other comments they
had about the game at the end of the survey. Out of the 50 players, 27 responded to this question,
which included statements such as “The game was fun, engaging, and made me think”, “It was fun!
Especially when those weird [FV explanations] appeared.” and “I loved it, can I play it now? You
should totally make an app, I would play all the time!”.

Additionally, players were copious with coming up with creative and thoughtful guesses, even if
the XAI technique did not lead them to the correct guess. As Figure 8 illustrates, players contributed
numerous guesses during each round, even for the more difficult representations. We observed
that players had more guesses for FV and baseline FV compared to the LIME and Grad-CAM and
their baselines. For example, even though FV explanations only led to 20% accuracy (as shown in
Figure 7), players on average contributed more than four guesses. This is expected as players often
did not uncover the correct answer for FV and baseline FV and kept guessing. However, this data

1View the supplemental material to see all the post-game survey questions.
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Fig. 8. Mean number of guesses from participants during each guesser round.

has the opportunity to be further analyzed by XAI researchers to see how explanations may be
misinterpreted by real people.

6 DISCUSSION
We created a Gamewith a Purpose called Eye into AI to aid researchers in evaluating XAI techniques.
The game features two distinct rounds: the guesser role and the explainer role. The explainer role
gathers data to analyze the agreement between humans and XAI techniques using the agreement
metric, while the guesser role gathers data to analyze the interpretability of a technique using the
exposure metric. We conducted an initial empirical study on Eye into AI to understand whether
Eye into AI could produce valid data for researchers to use. We used three metrics (agreement,
exposure, and copiousness) and qualitative survey data to understand how Eye into AI can support
various analyses that researchers may use to evaluate and compare XAI techniques. We briefly
discuss our findings and how they can be helpful to XAI researchers below.

During the explainer round, we asked players to select four out of ten explanations generated by
an XAI technique that they thought best represented the main object in the image. We found that
using the agreement metric, we were able to quantify the agreement between humans and each
XAI technique. Through statistical tests, we were able to rigorously compare the three techniques.
The ability of humans to distinguish between the top- and bottom-ranked explanations aligns with
cognitive science principles of visual attention. Specifically, bottom-up visual attention is a process
in which humans shift their attention to the salient features of images without activating more
complex cognitive processes [8]. Being able to distinguish between explanations that are top-
ranked versus bottom-ranked explanations provides researchers insight into which XAI techniques
align with humans.
One of the architectures Zhang et al. [62] compared in their experiments was an Inception V3,

which is based on the inception module and is used in the GoogLeNet architecture [53]. Given that
the architecture we used is very similar to one of the architectures used by Zhang et al., we briefly
discuss how our findings compare. Although we did not include SHAP in our experiment, we see
that other saliency map techniques (e.g., LIME and Grad-CAM) show high agreement between the
players and GoogLeNet, which aligns with the trends observed by Zhang et al. on Inception V3
with SHAP [62].

During the guesser round, we revealed explanations to the players to help them guess the pre-
dicted class. We showed the players three XAI techniques and their corresponding baselines during
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the guessing round. By using the exposure metric, researchers can compare the interpretability of
different techniques. Zhang et al. also measure exposure, albeit slightly differently than we do, and
observe that very few images were correctly recognized by humans in the first five segments for
Inception V3. We observed that more than half of the participants were able to correctly identify the
image when shown only the first explanation of Grad-CAM, and less than half of the participants
were able to correctly identify the image when shown only the first explanation of FV. While LIME
and SHAP are two very different methods, it raises interesting questions about how Grad-CAM
is different from these two methods, which allowed more participants to correctly recognize the
predicted class for this model. It also begs the question of to what extent there is an interaction effect
between the model and the XAI technique. Indeed, Zhang et al. also saw different performances
for different model architectures trained on the same data.

Existing GWAPs like Peek-a-boom [58] were not designed to evaluate XAI techniques, and the
experiments conducted by previous works evaluating XAI techniques were not explicitly designed
to be fun games. With Eye into AI, we integrate existing metrics into an enjoyable game that collects
valid data at scale for researchers. We observed that 70% of the players would like to continue
playing the game, which we used as a proxy for enjoyment. However, Eye into AI is just one way to
evaluate XAI techniques. Eye into AI demonstrates to XAI researchers that games are an efficient
way to capture human-centered data to evaluate their techniques.

7 LIMITATIONS AND FUTUREWORK
In this section, we briefly address limitations that stem from the design of Eye into AI as well as
the empirical study of Eye into AI. By addressing limitations with our work, we identify several
avenues that future work should consider.

7.1 Lack of multiplayer functionality.
Eye into AI was originally conceived to have multiplayer functionality. Although this has yet to be
implemented, with this feature, the game would allow further analyses on how the explanations
that explainers rank directly impact the ability of other players, such as guessers to guess correctly,
similar to Zhang et al. [62]. With the lack of multiplayer functionality, we can only compare
how explainers rank explanations to how XAI techniques do so. Future work should develop this
multi-player feature and analyze how explanations players choose, compared to XAI explanations,
impact another player’s ability to guess correctly in a game setting.

7.2 Lack of analysis on guesses throughout a round
Eye into AI generates a lot of data, including howmany guesses a player makes each round and what
they guess each time. These data capture how the player understands the explanations throughout
the round and how they may be misinterpreting the explanation. For example, when a player was
shown the top four LIME explanations for broccoli, the player guessed lettuce and spinach. By
analyzing the guesses, researchers may gain insight as to why explanations are not as effective
as they could be. For example, it can help researchers identify when a model may be relying on
spurious patterns. Future work should explore analyzing how the guesses evolve throughout each
round and how this can help researchers improve XAI.

7.3 Aimed to explore correct classifications only
In our empirical study of Eye into AI, our goal was to explore the system for images that the
model correctly classified. This limits our analyses because we cannot interpret how the players
viewed the explanations when the classification was incorrect. Furthermore, when measuring the
interpretability of XAI techniques, it is necessary to also explore images that were incorrectly
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classified.We encourage future studies using Eye Into AI to include images that themodel incorrectly
classifies to better represent the interpretability of a technique. It is unclear to what extent the
explainer round instructions to “guess the original image” would have significantly impacted our
results in Section 5.2, since the images were correctly classified by the model. In future versions of
Eye into AI, users should receive explicit instructions during the guessing round to “guess which
class the AI predicted for this image”.

7.4 Empirical analysis limited to one model and three XAI techniques.
We only empirically tested our GWAP with one model and three XAI techniques. Future work is
encouraged to explore the same techniques on different models for the same domain in order to
understand to what extent model design and performance impact the interpretability of different
XAI techniques. Eye into AI can be easily configured to evaluate the same interpretability techniques
used on different architectures, different interpretability techniques used on different architectures,
and different interpretability techniques used on one architecture (e.g., our empirical analysis
presented in this paper).

7.5 No clear guidelines for generating random baselines for XAI techniques
We created random baselines for each explanation technique to better understand if formalized
XAI techniques are more or less interpretable than a random baseline. Since there is no defined
way to make random baselines, we created our own techniques. While we tried to align it with
how each XAI technique was designed, we acknowledge that this may impact our analysis.

8 CONCLUSION
With several XAI techniques being developed to improve the transparency and interpretability
of AI, being able to evaluate and compare them has become increasingly important. Several XAI
evaluation studies have used machine-based performance to identify which XAI techniques are
more interpretable than others, but these methods may not generalize to how humans view these
techniques. While recent studies use crowd-sourcing and human-based metrics to evaluate XAI
techniques, we develop a GWAP, Eye into AI, and conduct an empirical study to determine if Eye
into AI is a valid XAI evaluation method to collect data at scale.
We designed Eye into AI, a GWAP, to help researchers collect data to evaluate and compare

the interpretability of visually distinct and algorithmically different XAI techniques. Through an
empirical study, we evaluated how well our GWAP achieves that goal by exploring the significance
of player data using three metrics. Our novel, playful method for evaluating and comparing
XAI techniques produced statistically significant results regarding how humans agree or disagree
with a technique’s ranking of explanations by measuring agreement and which techniques may be
more interpretable than others by measuring exposure and task accuracy. Furthermore, we found
that the players provide numerous guesses by measuring copiousness, and they do not need to
have knowledge about AI in order to generate valid data while playing Eye into AI. Evaluating
explainable AI techniques through games with a purpose, such as Eye into AI, ultimately can
provide researchers with new methods to investigate how humans perceive and collaborate with
AI on visual decision-making tasks.
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