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Artificial intelligence (AI) is increasingly being deployed in high-stakes domains, such as disaster relief and
radiology, to aid practitioners during the decision-making process for interpreting images. Explainable AI
techniques have been developed and deployed to provide users insights into why the AI made a certain
prediction. However, recent research suggests that these techniques may confuse or mislead users. We
conducted a series of two studies to uncover strategies human use to explain decisions and then understand
how those explanation strategies impact visual decision-making. In our first study, we elicit explanations from
humans when assessing and localizing damaged buildings after natural disasters from satellite imagery and
identify four core explanation strategies that humans employed. We then follow-up by studying the impact
of these explanation strategies by framing explanations from Study 1 as if they were generated by AI and
showing them to a different set of decision-makers performing the same task. We provide initial insights on
how causal explanation strategies improve humans’ accuracy and calibrate humans’ reliance on AI when the
AI is incorrect. However, we also find that causal explanation strategies may lead to incorrect rationalizations
when the AI presents a correct assessment with incorrect localization. We explore the implications of our
findings for the design of human-centered explainable AI and address directions for future work.
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1 INTRODUCTION
Artificial intelligence (AI) systems are increasingly being deployed with the aim of helping prac-
titioners make high-stakes decisions more quickly and accurately. For example, computer vision
enables the extraction of meaningful information from images, such as classifying objects within
an image or segmenting an image to locate objects [58]. With computer vision models rapidly
increasing in accuracy, several tasks requiring image classification, segmentation, or object detec-
tion have been automated to aid practitioners. For example, radiologists may work with AI-based
tools to evaluate medical imagery [11, 48], while disaster relief workers may work with AI to
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assess building damage from satellite imagery after natural disasters [21]. These are examples of
human-AI collaboration that are increasingly becoming prevalent across a range of high-stakes
decision-making contexts. However, human-AI collaboration is not guaranteed to result in better
decision-making in practice.

To support more effective human-AI collaboration, several eXplainable AI (XAI) techniques have
been developed with the goals of providing insight into how an AI makes its decisions, helping
decision-makers calibrate their trust and reliance upon AI1. For instance, some techniques yield
saliency maps (heatmaps) indicating the most important regions of the image that contributed to
its classification. However, to date, many of these methods have been designed for data scientists
or machine learning engineers instead of subject matter experts [37]. Furthermore, Brennen [8]
and Liao et al. [37] emphasize that several XAI techniques do not present the information that
decision-makers actually need to see to inform their decision-making. For instance, in the context
of medical imaging, Saporta et al. [52] report that existing XAI techniques rarely highlight clinically
meaningful image regions. These empirical findings highlight the need for a more human-centered
and empirically informed approach to designing and evaluating AI explanation techniques to
understand which explanation techniques, or combination of techniques, can truly support effective
human-AI collaborative decision-making.

To tackle this need, our research takes a broader view, shifting focus from current XAI techniques
to ask the question:What types of explanations do humans generate and benefit from in the context of
visual decision-making tasks? We argue there is much to learn from human-generated explanations
in the context of human-human collaboration [63]. In many real-world decision-making settings,
practitioners generate explanations intended for other practitioners to consume, to support their
decision-making. For example, when radiologists make observations from medical images, they
often characterize their observations and inferences for other radiologists or practitioners in other
care units [12]. By uncovering strategies that humans use to effectively explain decisions to others,
we hope to inform the design of novel human-centered XAI approaches that could emulate these
strategies.

Inspired by these observations, in this study, we focus on three primary questions:

• RQ1.What strategies do humans use to explain, or rationalize, their reasoning for a high-
stakes image classification task?

• RQ2. How do different human explanation strategies improve humans’ accuracy in a high-
stakes image classification task?

• RQ3. How do different human explanation strategies impact decision makers’ reliance on
AI?

In order to ground our experiments in a real task requiring high-stakes decisions, we focus on
AI-assisted decision-making for assessing building damage after natural disasters utilizing satellite
imagery. Assessing damage is typically a bottleneck before responders can help, and AI-based
solutions have been proposed to solve this bottleneck [21].

We address our research questions through a series of two studies. In the first study, we address
RQ1 by designing a system that shows participants several pairs of images for a specific geographic
location before and after a natural disaster. For each image pair, participants assessed the level
of damage and were asked to provide convincing explanations, using a broad range of tools, that
justified their assessment. These results allowed us to uncover explanation strategies that humans

1Throughout this paper, we distinguish between the terms reliance and trust: reliance is an observable human behavior
that can be measured, whereas human trust is a latent factor which cannot directly be measured from observable human
behaviors [14, 25, 36, 61]
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employ when explaining their decision to others, which can help inform the style and design of
novel human-centered XAI techniques.
In the second study, we address RQ2 and RQ3 by conducting a follow-up study in which

explanations elicited from participants in the first study are presented under the guise of AI. This
approach allowed us to evaluate how different explanation strategies identified from the first study
may impact decision-makers’ accuracy as well as their reliance on AI as if these strategies were
implemented and deployed as human-centered XAI techniques.

Across our two studies, we contribute the following:

• We provide insight into the types of explanation strategies humans employ when pro-
viding rationales for their decisions, in the context of a visual decision-making task to inform
the design of human-centered XAI techniques.

• We present a new approach for exploring the impacts of prospective explainable AI tech-
niques on human-AI decision-making, by presenting participants with different types of
human-generated explanation strategies, where the human explanation strategies are framed
as AI-generated explanations.

• Using this approach, we conduct the first empirical investigation in the literature into the
impacts of different human explanation strategies on task accuracy and reliance upon
AI-based assessments.

2 RELATEDWORK
As AI supports more decision-making processes, providing explanations to decision-makers about
how AI makes predictions is becoming increasingly important. On such an account, several ex-
plainable AI techniques have been proposed to provide insight into what features contributed to
the predictions from the AI. We present several explainability techniques from XAI literature, as
well as user studies on different XAI techniques from human-computer interaction literature.

2.1 Explainable AI Techniques
Explainable AI (XAI) is increasingly being developed for a wide range of tasks, from helping data
scientists debug machine learning models to aiding doctors while diagnosing patients. For some
tasks, the model being used is inherently interpretable (i.e., interpretable models); for other tasks,
interpretability is completely lost and requires an additional method to understand the prediction
or mechanics of the model [44].

Specifically, computer vision tasks such as image classification or object detection employ deep
neural networks (DNNs), or black-box models, that are quite difficult to interpret without XAI
techniques. To address this issue, several model-agnostic techniques have been devised (techniques
that can be used regardless of the DNN) to provide insight into the abstractions of these models [51].
These model-agnostic techniques are either providing insights about the overall limitations and
capabilities of the model (global explanations) or offering insights into individual predictions (local
explanations) [3, 44].
Adadi and Berrada [3] provide an in-depth survey of several different types of explainability

methods. We briefly review some of the techniques that are most prevalent throughout the Human-
AI collaboration and empirical XAI literature.

LIME and SHAP are often considered two of the most popular and prominent local, model-
agnostic techniques [39, 57]. For instance, LIME [51], is a local, model-agnostic technique that
uses local linear approximation for explaining outputs. For image data, it shows grouped regions
(i.e., superpixels) of an image to highlight the most important feature that contributed to the
classification of the image [51]. SHAP shows the importance of each feature for one prediction

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 48. Publication date: April 2023.



48:4 Morrison, et al.

[41]. In addition to these techniques, other local, model-agnostic techniques such as GradCAM
and XRAI are devised to show the saliency maps, or heatmaps, of the most salient, or important,
region of the image that contributed to its classification [27, 53, 56]. While GradCAM and XRAI
show pixel-level attributions by highlighting regions of the image, feature visualizations provide
an insight into what the model has learned by generating images of features learned [46].

Another technique called example-based explanations provides insight into the AI’s limitations
and capabilities on a task by identifying certain instances that showcase such limitations and
capabilities [3]. One specific type of example-based explanations is a counterfactual explanation
which takes a given prediction and provides details about what the prediction would have been if a
certain feature had a different value [62]. There are also normative and comparative example-based
explanations [10]. Normative explanations show examples from training data that closely matches
the target class while comparative explanations show examples from training data that closely
match the predicted class [10]. Example-based explanation techniques have recently become
popular within visual decision-making for image classification [20, 35].

In line with the feasibility of XAI techniques and their technological advances, AI-assisted high-
stakes decision-making processes are also getting attention in adopting XAI. As such, researchers
have attempted to attach explanations in AI-powered high-stakes situations, such as decision-
making in humanitarian assistance and disaster relief (HADR). For instance, previous studies
presented the use of the SHAP technique for explaining the results of HADR detection models
trained for various tasks, such as earthquake-induced building damage detection [42] and spatial
drought prediction [15]. In addition to the deployment of XAI techniques, Andres et al. provided
insights on forecasting several application methods in supporting the decision-making processes
of humanitarian aid planners with the aid of XAI [4].

2.2 Human-Centered Explainable AI Techniques
The majority of XAI work has focused on interpretability instead of explanation generation which
Ehsan and Riedl [17] define as providing, “... useful information for practitioners and users in an
accessible manner.” In this work, they proposed taking a sociotechnical approach to XAI given the
dynamic situations between humans and XAI systems. For example, Ehsan et al. [16] trained a
DNN on data from humans speaking aloud while playing a game to train an AI to rationalize how
it plays that game. Their user study showed that players were more satisfied with the generated
rationalizations than other explanation methods [16].
Hendricks et al. [22] proposed a model that generates justifications, or visual explanations, for

image classification by including class discriminative features to provide specific distinguishable
information in hopes to aid non-experts. However, the explanations are not generated based on
data from human explanations; rather, they are generated based on visual features and fine-grained
visual descriptions [22].

While explanations generated from natural language techniques are more intuitive to end-users,
Sevastjanova et al. [54] emphasized the importance of combining multiple types of explanations
(i.e., visualizations, text) to generate explanations for machine learning models. They also provided
examples of what an explanation that combines visualizations and text might look like.

Several explainable AI techniques have been designed to provide insight into “black-box” models;
however, those techniques are not informed by the types of explanations humans generate. Until
recently, XAI techniques were not typically evaluated with end-users to confirm which types of
explanations end-users find helpful, what information the end-users are looking for, or who the
end-users are. Explanations can be requested for a variety of reasons from a variety of different
end-users; incorporating who the explanation is being designed for and why is a core part of human-
centered XAI [18]. Furthermore, human-centered XAI is interdisciplinary combining cognitive
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science, design, and sociotechnical perspectives [38]. While understanding who and why is integral,
it is also important to understand what types of explanations are most effective to aid human
decision-making. To date, there is no previous work that elicits explanations from humans in a
visual decision-making task and identifies and evaluates the different strategies used to develop an
explanation.

2.3 Impact of Explainable AI on Humans
Previous studies have evaluated the impact of different XAI techniques on humans, such as trust,
reliance, and task-performing accuracy. For instance, Zhang et al. compared the impact that local
explanations and model confidence have on the human’s trust in AI, particularly when collaborating
on a task where the human and AI have similar performance [67]. As a result, they found that
participants’ trust in the model increased when the AI’s confidence in its prediction was high. They
did not observe any impact from local explanations being shown to the participants [67]. Similarly,
Bansal et al. [6] evaluate the impact of saliency explanations and expert-generated explanations on
sentiment analysis and question answering tasks where the human and AI have similar performance.
They observed that humans were more likely to agree with the AI when shown explanations even
when the AI was incorrect [6].

Chu et al. [13] explore the impact of saliency maps on an age prediction task when the saliency
maps highlight meaningful regions, spurious regions, and randomly generated regions of the image.
They did not find that the saliency maps improved the participants’ accuracy or trust. Nourani
et al. [45] conducted a similar experiment evaluating the impact of meaningful and meaningless
saliency maps on the perception of system accuracy. They observed that meaningless saliency
maps negatively impacted how the participants perceived the system’s accuracy.
Wang and Yin [65] compare the impacts of four different explanation techniques including

counterfactual explanations, feature importance, feature contribution, and nearest neighbors on
two different tasks. Overall, their results find that counterfactuals did not help calibrate trust [65].
Similarly, another study designed an interactive system for predicting the risk of child maltreatment
with four different explanation techniques [68]. They recruited experts and non-experts for their
study and observed that feature contribution was the most useful explanation across experts and
non-experts.
As a result of these user studies, current XAI techniques often show little or negative impact

on human-AI collaboration. These findings motivate the need for human-centered XAI to better
understand the questions that stakeholders have with the appropriate context. Therefore, it is
important to understand how humans generate explanations to improve current explanation
techniques and human-AI decision-making. To our knowledge, there is no study that identifies
defined strategies from human explanations and identifies their effects on human-AI decision-
making through in-depth qualitative and empirical study.

In this paper, we extend the literature by identifying how humans explain in a visual decision-
making task and characterize their explanations into core explanation strategies. With these
strategies, we further evaluate the effects (i.e., task accuracy and reliance on AI assessment) of
each strategy on humans.

3 TASK SELECTION: BUILDING DAMAGE ASSESSMENT
Satellite imagery is abundant which has resulted in numerous computer vision applications. For
example, satellite imagery and computer vision techniques have been used in various high-stakes
scenarios, such as identifying economic growth and stability [26, 47, 66], detecting poachers and
illegal fishing vessels [60], identifying damaged buildings after natural disasters, armed conflicts,
and other catastrophic events [21].
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Natural disasters, such as hurricanes, flooding, wildfires, and earthquakes often have devastating
effects on humans and their properties. Assessing building damage after a natural disaster from
satellite imagery is a critical task. The damaged structures put a huge strain on the local and
regional economies forcing officials to rely on the government for funds to support recovery efforts.
Our interviews with HADR experts suggest that in certain situations to receive funding in a timely
manner for recovery efforts, rapid and accurate identification of the number of damaged is crucial.

3.1 Task Expertise
We chose building damage assessment from satellite imagery as our task because prior work
indicates that it is possible to quickly train users to perform this task with reasonable accuracy,
and platforms already exist to crowdsource building damage assessment from people [2, 29], as
discussed above. Unlike other specialized domains such as medical imaging, where users are often
required to have rare expertise, prior work has successfully used crowdsourcing approaches to help
gather information more quickly after natural disasters [29, 55]. Furthermore, many people have
experience viewing and interpreting satellite images in their day-to-day life, such as when using
navigation systems or online interfaces like Google Earth.

We had informal discussions with HADR experts to better understand the domain while designing
our studies. These discussions helped us understand what HADR experts would look for in satellite
imagery to determine if a building is damaged and its level of damage. For example, analysts look
for buildings where the roof completely collapsed and buildings that are partially or completely
surrounded by water. Analysts also look for displaced portions of buildings in the immediate
surrounding areas. These examples helped us create a change detection [59] training module
to quickly train our participants to assess building damage from pre- and post-disaster satellite
imagery. These discussions also provided our team with an understanding of the skill level that
people had to create the building damage assessment dataset (xView2). The annotations were
labeled by the authors of the dataset, HADR experts and imagery analysts from CrowdAI [21].
Lastly, we learned about the types of tools that domain experts use in practice to identify damaged
buildings. Many imagery analysts rely on ArcGIS, a general-purpose mapping tool to view and edit
maps including satellite imagery.
Various crowdsourcing platforms have been developed to engage the public in helping to save

lives by assessing building damage using satellite imagery, both during and after humanitarian
disasters. Features from tools that experts use such as ArcGIS are included in many crowdsourcing
platforms. These include segmenting buildings and panning or zooming satellite images. For
instance, MapSwipe provides a platform with such features for volunteers to contribute on several
tasks including damage assessment and change detection in satellite imagery [2]. CrowdAI also
partners with governmental institutions, such as the California Air National Guard, to leverage
crowdworkers to assess building damage in real-time during wildfires [1]. Given that platforms
exist to crowdsource initial building damage assessments, we determined that crowdworkers would
be a reasonable cohort for our study.

3.2 Task Generalization
Localizing and grading damaged structures from satellite imagery is becoming a popular classifica-
tion and object detection task in deep learning and computer vision. Building damage assessment
in satellite imagery requires the analysts to pan and zoom in on a pair of before and after images to
identify any abnormalities. The task of comparing two images to identify and annotate differences
between images generalizes beyond damage assessment. For example, radiologists compare multiple
views to make diagnostic interpretations in breast imaging [19]. Thus, we believe that insights
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derived from satellite imagery assessment tasks could be extensible to other domains involving
computer vision applications.

3.3 Selected Dataset
Designed for supporting humanitarian assistance and disaster relief research, the xBD dataset covers
a wide range of natural disasters that frequently occur, such as floods, earthquakes, wildfires, and
hurricanes [21]. This dataset offers before and after images as well as a ground truth assessments
and annotations for the damage. With the ground truth labels available, we were able to train
participants to get familiar with the task at hand. This dataset is the official dataset used to develop
the state-of-the-art object detection and classification models that are currently deployed in a
limited capacity in the real-world to aid in initial building damage assessments.

Since most participants are likely to be new in assessing building damage from satellite imagery,
we deemed it not beneficial to present participants images that hadmore than one damaged structure
with different levels of damage. This choice was made also to reduce potential confounders. We
filtered out 96.53% of images from the xBD dataset that had more than one damaged structure with
different levels of damage or no damaged structures.

4 STUDY 1: HUMAN EXPLANATION STRATEGIES
In this study, we address RQ1 by eliciting explanations from humans during a visual decision-
making task: building damage assessment from satellite imagery. In order to inform the design
of human-centered explainable AI techniques for visual decision-making tasks, we address the
following two questions:

• What kinds of strategies do humans employ to explain their rationale for their damage
assessment?

• What are the most prevalent strategies among those identified?
The main goal of this study is to uncover strategies that humans employ when explaining

their decision to better understand human-preferred explanation strategies. In order to uncover
such strategies, we created an interface to elicit explanations from them while making decisions.
Depending on the strategy used, the resulting explanation will reveal different information or
features about the decision than an explanation would reveal that follows a different strategy.
Understanding these strategies and how contextual information is incorporated in such strategies
can inform new strategies for designing novel human-centered explainable AI techniques.

4.1 Study Design
4.1.1 Recruitment & Participants. To collect explanations, we performed our study on an online
participant recruiting platform, Prolific. For a consistent participant base, we recruited workers
who use English as their first language, currently reside in the United States, have an approval rate
of 95%, and have a record of at least 50 task submissions. After screening out incomplete responses,
responses from a total of 60 workers (Mage = 34.07, SDage = 8.28, 26 female) were collected. Once the
task was completed, each worker was assigned an anonymous ID and compensated 6.50 USD for
their participation. To motivate the participants, we offered a bonus payment of 1 USD to those who
received the highest scores on their assessments (25% of the participants were awarded bonuses).

4.1.2 Data Selection Method. About half of the image sets in the xBD dataset contain no building
damage (46.37%). Furthermore, of the images with damaged buildings, 89.47% contained multiple
buildings. Our experimental design focuses only on images with one damaged building (5.64% of
images) or multiple damaged buildings with the same damage level (18.26%) so we could isolate
the assessment and localization for one individual target. Furthermore, this allowed us to focus
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(a)
(b)

(c)

Fig. 1. Interface of the training session used to familiarize users with the task of building damage assessment.
(a) Two satellite images side-by-side are presented, and (c) the user assesses damage based on four different
options: No damage, minor damage, major damage, and destroyed. For the first and second sub-sessions,
(b) users are shown an overlay in the image highlighting where the damage is when hovering to help them
locate the building

our training on a single target. For the training session, we curated a set of 27 image sets for a
variety of natural disasters (7 flooding, 13 hurricane, 5 wildfire, 2 tsunami). For the main session,
we curated a set of 10 cases for a variety of natural disasters (4 hurricane, 3 flooding, 2 wildfire,
and 1 earthquake), each of which contains pre- and post-disaster images with a damaged building.
The chosen images we used are available on our GitHub site: training set, main set.

4.1.3 Training session. Before getting into the main session, participants were required to complete
a training session. The objective of the training session is to let participants ease into the annotation
interface and become familiarized with building damage assessment tasks. Participants are provided
with detailed criteria for assessing damages on the interface to help them learn the differences
between the levels of damage (i.e., no damage, minor damage, major damage, destroyed) [21].
With these criteria in mind, participants are asked to complete the training session by assessing
damage in several sets of satellite images. The training interface seen in Figure 1 shows the pre-
and post-disaster satellite images with four different damage assessment options.

The training phase is composed of three sub-sessions with slightly different functionality in each
to help familiarize participants with the task and navigate the interface. Each sub-session shows nine
pairs of satellite images in groups of three. The participant is alerted which damage assessments
they got incorrect and correct. The participant must select the correct damage assessment for each
pair of images in a group before seeing the next group. The first sub-session shows a clue (seen in
Figure 1-(b)) of where they should look to assess the level of damage when they hover over the
imagery. However, they do not have zoom or pan functionalities. The second sub-session adds
in zoom/pan functionality with the clue. Finally, in the third sub-session, the clue is taken away,
but the zoom/pan functionality remains. The sub-sessions were designed to help the participant
understand what features to look for in satellite images when assessing the damage. The average
time each participant spent completing training tasks was 13.26 minutes (SD = 5.52).

Even if the participants may have become sufficiently accustomed to the interface and assessing
damages in the training session, we presumed that they still may not be familiar with generating
annotations on top of the images. Thus, we let participants go through a tour of the annotation
interface designed for the main session. This tour introduces participants to the different annotation
tools offered and how to add text to rationalize their annotations and assessment.
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Fig. 2. Overview of the interface for the main task. Participants are presented with several different annotation
tools to highlight evidence that helps explain their damage assessment. Participants provide explanations for
each annotation they add as well as a global explanation for the pair of images overall

4.1.4 Main session. After successfully completing the training session, each participant was pre-
sented with a pair of satellite images of a specific geographical region before and after a natural
disaster. We presented 10 sets of satellite images that we curated from the xBD data set [21].
Participants were asked to identify the damaged structure in the post-disaster image, indicate the
level of damage (i.e., no damage, minor damage, major damage, destroyed), and explain why they
think it has that level of damage. Participants were told that their explanations will be shown
to other participants in the study and that their goal is to, “convince the other participants that
your judgment of damage is correct”. To mitigate possible biases that stem from the sequence, we
assigned each participant to one of four different sequences to present pairs of images.
While assessing image sets, participants were offered a wide range of drawing tools (rectangle,

polyline, pin, circle, pen) and viewing functionalities (pan, zoom, mirror-drawing) to help explain
their assessment choice, as shown in Figure 2. Mirror-drawing allows participants to synchronize
their annotations for the pre- and post-disaster images. When mirror drawing is selected, the
participant only has to draw their annotation once, and it will be reflected on the other image
at the same location. The annotation tools allowed participants to have flexibility in locating
damaged buildings and choosing how to generate visual components of their explanations (noted
as ‘Explanation’ on the bottom right side of the interface in Figure 2).
Once participants draw a particular markup using the provided drawing and viewing tools,

our system shows a text field to allow participants to explain the marked-up region via text. We
will refer to the marked-up region is as the image-based annotation and the accompanying text
is as the text-based annotation. Participants can make references to the image- and text-based
annotations by citing them within their global explanation (seen in Figure 2).

After they successfully completed the task, each participant was then asked to assess the clarity
of the guidelines we offered, along with their own performance while completing tasks based on
the 5-point Likert scale. Additionally, in order to identify possible enhancements for designing the
interface, we asked them to freely note any tools that were difficult to make use of and the tasks
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that were particularly difficult, as well as their comments on the study. The average time elapsed
for the main phase was 23.71 minutes (SD = 12.19). The average number of image- and text-based
annotations per participant was 14.73 annotations (SD = 4.07) and an average of 1.47 annotations
per image (SD = 0.85).

4.1.5 Analysis. To develop codes capturing participants’ explanation strategies, we adopted a
“coding reliability” approach to thematic analysis [7]. Two members of our research team indepen-
dently analyzed participants’ image- and text-based annotations, while taking notes on explanation
strategies they observed. Our research team discussed these notes and iteratively synthesized them
into higher-level codes. Once all team members agreed on a set of codes to characterize high-level
qualities of participants’ explanations, two team members went back through the full dataset and
applied this set as a code book, labeling each response with one or more of these codes.

4.2 Results
While we provide quantitative results on the frequency of strategies employed by the participants
during decision-making (Figure 3), the main findings from this study are the qualitative results
summarizing the core strategies employed during decision-making (Table 1).

4.2.1 Identified Strategies. We uncovered six explanation strategies and labeled the responses
based on these strategies with a high overall inter-rater reliability (Krippendorff’s 𝛼) of 0.75. The
definition and a concrete example for each strategy are listed in Table 1. The table consists of three
columns: code, definition, and example. The code is a short identifier to represent the strategy.
The definitions in the gray rows represent the general strategy observed and the definitions in the
white rows represent more specific subtypes of strategies. The frequency of each strategy identified
by the research team is plotted in Figure 10 in Appendix Section A.2.

4.2.2 Representative Strategies. Although we identified six major strategies (A - F), strategies C
and E were so sparse (approximately 10% of overall user assessments) that it was impossible to
identify the exemplar case for certain pairs of satellite images. Thus, strategies A, B, D, and F were
curated as the core explanation strategies. In Figure 3, we provide a breakdown of the number of
participants who used a given explanation strategy for each image. The four strategies for a given
image may exceed 60 because some participants used multiple strategies within their response. We
observed that code B (comparing pre- and post-disaster images) was the most prevalent among the
responses for all images. We acknowledge that this result may be influenced by the design of the
interface showing the two images side by side, making it natural to compare them in their response.
The frequency of a strategy observed from Study 1 should not be associated with how that strategy
will impact decision-making.

In the rest of this section, we provide detailed descriptions and examples of eachmajor explanation
strategy we identified through our analysis.

Strategy A: Constructing a causal argument to explain building damage. Rather than
directly referencing the visual features of a building, participants instead pointed to visual evidence
of a natural disaster to the surroundings of a building to explain their assessment of building damage
(A-1; e.g., “From the evidence of flooding, I would say the building seems to have been affected” ). In
other cases, the participants inferred that a particular type of natural disaster had occurred based on
evidence of damage to a building and then explained their overall assessment of building damage
with reference to the type of disaster (A-2; e.g., “The building has roof damage. Probably a hurricane
came and hit it” ). Some participants constructed more complex, multi-step causal arguments (A-3;
e.g., “(Step 1) There was a fire and (Step 2) it was a wildfire that took everything from the building.
(Step 3) You can only see the outline of the building” ).
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Table 1. Summary of the strategies the research team identified from doing a thematic analysis on the
responses from study 1. Grey rows indicate major codes, each of which is followed by the sub-codes (except
for the code C which contains no sub-codes)

Code Definition Example

A Constructing a causal story
to explain building damage

A-1 Use evidence of natural disaster/lower-level cause
to argue that there was damage on objects

“From the evidence of flooding, the
structure seems to have been affected”

A-2
Use evidence of structural / sub-structural damage /

surrounding area to argue that there was the
effect of natural disaster/lower-level cause

“Since the structure seems to be underwater,
there must have been a flood”

A-3 Multi-step causal chain argument “From the evidence of the flood, I suspect
the flood has moved and damaged the structure”

B Contrasting pre- and post-disaster imagery

B-1 Comparison of the structure See Figure 4-(a)

B-2 Comparison of the surrounding area See Figure 4-(b)

B-3 Comparison of the sub-structures See Figure 4-(c)

B-U Falls under B, but without using a mirror-
drawing or objects unidentifiable See Figure 4-(d)

C Highlighting affected part of a building See Figure 4-(c)

D Explanations based on the extent of damage
to a specific building

D-1 Based on the amount or proportion of the
structure that appears to be damaged

“The building is not completely destroyed
but it has lost the majority of its roof”

D-2 Based on their inference about the
possibility of being recovered someday “Looks like it can be recovered someday”

E Explaining reasons for lack of
confidence in their own assessment

E-1 Due to confusing artifacts in images “It’s hard to tell due to the shadow”

E-2
Due to the changes irrelevant to disaster
between pre- and post-, or the elapsed

time between them
“Seems like new buildings had been built”

E-U Other reasons or without any reason “This image is a bit mystifying to decode”

F Using the number of damaged structures in an
image as the measure for severity of the disaster

F-1 Structures only “There are some structures remaining but
most have been very damaged”

F-2 Structure + surrounding area “Small area burnt. Home intact”

F-3 Surrounding area only “Majority of the water has been removed”

F-U Non-identifiable Simply indicating region as ‘area’

O Other minor codes

N Simply noting as ‘No damage’
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Fig. 3. The number of participants that used each core explanation strategy for each image set was reported
by both coders. Some participants used multiple explanation strategies in their response to a given image set.

Strategy B: Contrasting pre- and post-disaster imagery. As seen in Figure 3, a majority of
the participants explained their damage assessments through direct comparisons across image sets
(e.g., by creating an annotation using the mirror drawing tool). In more than 200 cases, participants
referenced contrasts in the appearance of a specific building between the pre- and post-disaster
images (B-1; see Figure 4-(a)), or contrasts in the appearance of specific substructures of a building
(B-3; see Figure 4-(c)). Additionally, participants often directly compared the appearance before and
after the disaster of the area surrounding a building (B-2; see Figure 4-(b)). Finally, ambiguous cases
in which people generated contrast-based explanations but did not clearly specify which elements
of an image they were comparing were marked with the sub-strategy B-U (see Figure 4-(d)).

Pre-disaster Post-disaster Pre-disaster Post-disaster

“The structure is no longer there, all 
we see is a outline of the former 

building.”

Pre-disaster Post-disaster

“Flooding has completely surrounded 
many of these structures.”

“Post-disaster photo shows major roof 
damage and appears that part of the 

building is missing.”

Pre-disaster Post-disaster

“Minor changes to the structures and
 landscape in the post-disaster

pictures.”

(a) Example of B-1 (b) Example of B-2 (c) Example of B-3 and C (d) Example of B-U

Fig. 4. Examples of sub-strategies B-1, B-2, B-3, B-U, and C
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Strategy D: Explanations based on the extent of damage to a specific building. For some
cases, participants explained their assessment of the level of damage to a given building based on
the proportion of the building that appears to be damaged (D-1; e.g., “Approximately half of the
building was collapsed” ). Interestingly, even when significant building damage was evident, some
participants explained lower damage assessments arguing that the damage appeared repairable
(D-2; e.g., “One part (of the building) was hit ... seems like it could be rebuilt” ).

Strategy F: Using the number of damaged structures in an image as a measure of the
severity of the disaster. While strategy D captures cases where participants explain their damage
assessments with reference to the apparent extent of damage to the building itself, strategy F is
when participants explain their damage assessments with reference to the overall extent of damage
observed in the image as a whole. For example, some participants explained their building damage
assessment with reference to the number of other buildings that appeared to be affected (F-1; e.g.,
“It appears that one building has disappeared, leading me to believe it was destroyed. However, the
remaining buildings seen are unharmed” ).

Furthermore, other participants explained their damage assessment with reference to the extent
of damage visible in the area surrounding a building, including building damage (F-2; e.g., “None of
the large buildings appear to be damaged, but there is evidence of a large mud patch (in the surrounding
area), indicating some minor flood damage” ) or excluding building damage (F-3; e.g., “All trees have
been damaged or destroyed” and “Flooding has completely surrounded many of these structures” ).
Finally, ambiguous cases were marked as F-U (e.g., “Every area was totally destroyed” ).

5 STUDY 2: IMPACT OF EXPLANATION STRATEGIES
Before recommending that researchers start developing techniques to create explanations in a
similar manner to humans as we found in the first study, we need to evaluate whether they might
actually be helpful. We uncovered several explanation strategies that people use when explaining
their decision for building damage assessment by eliciting explanations from them in Study 1. Based
on these core strategies from Study 1, we conducted a follow-up study to explore whether and
how each explanation strategy impacts decision-makers’ performance if these strategies were to be
implemented as actual human-centered XAI (HCXAI) techniques. This study will allow us to further
inform the design of HCXAI techniques by quantifying their potential impact on decision-makers

Training 
session

Study 1
Surfacing human 

explanation strategies

Study 2
Characterizing impact of 

explanation strategies

Training 
session

Assessing building damage

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Assessing building damage

Assess building damage Explain the building 
damage assessment

x 10

Thematic 
analysis

Statistical 
analyses

Elicit core 
strategies

Understand how 
each explanation 
strategy impacts 

reliance and 
accuracy

x 10

Fig. 5. High-level overview of the study design and data analysis done for the two studies. Participants of
both studies went through the same training session. Study 1 participants assessed building damage and
provided explanations for their assessment. We did a thematic analysis on the explanations provided by
participants and identified four core strategies. Representative explanations of each core strategy from study
1 participants were used in stages 3 through 5 in the second study while a separate set of participants were
assessing building damage. We analysed how the participants assessed building damage throughout the five
stages to understand how the core strategies impacted accuracy and reliance.
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during human-AI collaboration. A pictorial overview of how this study uses findings from the first
study is shown in Figure 5.

5.1 Study Design
We explore RQ2 and RQ3 by framing explanations from Study 1 as if they were generated by AI
and showing them to a new set of participants doing the same task, building damage assessment.
The study is designed as if we are using AI in order to identify how the explanation strategies
might impact decision making if they were developed and implemented as an XAI technique.
Specifically, it allowed us to evaluate whether and how particular human explanation strategies
impact decision-makers’ accuracy and reliance on AI.

5.1.1 Recruitment & Participants. We followed the same recruitment procedures as in Study 1:
we collected results from 60 participants (Mage = 34.93, SDage = 12.51; 33 female) through Prolific,
who have English as their first language, who currently reside in the United States, who have an
approval rate of at least 95%, and who have a minimum of 50 submissions. We excluded workers
who participated in Study 1 due to the significant overlap of content. We also excluded two
participants who failed an attention check. Each worker was compensated 6.50 USD for their
participation, with an anonymous ID assigned to analyze their responses. To incentivize active,
high-quality participation, we offered a bonus of $1 USD for those who scored within the top 50%
of all participants. Of the 60 participants, 30 participants received bonuses.

5.1.2 Training. The training for this study consisted of two phases: the first phase was the same
training phase from the first study (seen in Figure 1) where participants are shown nine pairs of
satellite images in groups of three to get familiarized with building damage assessment. In the
second training phase, we provide a walk-through of the damage assessment tool and highlight
the additional information that is provided in each stage. Each participant is assigned a pair of
satellite images based on the satellite images they will not see during the main task. The visual and
text-based annotations for the example task were manually created (Appendix B.1).

5.1.3 Main Task. Participants were asked to assess building damage from several pairs of pre-
and post-disaster satellite images. During the task, participants in this study were presented with
human-generated outputs (framed as AI outputs) sampled from four different scenarios that arose
in data from the first study:

• Correct assessment with correct localization: The Study 1 participant’s assessment and
visual annotation matched the ground truth assessment and ground truth position of the
damaged building.

• Correct assessment with partially correct localization: The Study 1 participant’s assess-
ment matched the ground truth assessment while their visual annotation included a portion
of the ground truth position of the damaged building.

• Correct assessment with incorrect localization: The Study 1 participant’s assessment
matched the ground truth assessment while their visual annotation was completely wrong.

• Incorrect assessment: The Study 1 participant’s assessment was incorrect.
We identified a set of representative examples for each explanation strategy and each scenario

detailed in Section 5.1.4. Participants were randomly assigned to one of four groups (Table 2) with
a total of 15 participants for each group. Each participant saw a total of four different image sets,
each corresponding to one of the four scenarios. Different explanation strategies were paired with
different scenarios across the four groups. In addition, within each group, these image sets were
presented to the participant in a random order to minimize possible order effects.
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Table 2. Four different groups were created to evaluate each explanation code in each scenario. We show
which code was assigned to which scenario for each group and which image set was used for that explanation
code/scenario.

Group # Scenario Explanation Strategy Image Set

1

Correct Assessment, Correct Localization A Hurricane Florence 22
Correct Assessment, Partially Correct Localization B Hurricane Michael 530

Correct Assessment, Incorrect Localization D Midwest Flooding 96
Incorrect Assessment F Midwest Flooding 76

2

Correct Assessment, Correct Localization B Socal Fire 193
Correct Assessment, Partially Correct Localization D Hurricane Florence 22

Correct Assessment, Incorrect Localization F Hurricane Michael 530
Incorrect Assessment A Santa Rosa Wildfire 246

3

Correct Assessment, Correct Localization D Hurricane Michael 530
Correct Assessment, Partially Correct Localization F Midwest Flooding 96

Correct Assessment, Incorrect Localization A Hurricane Florence 22
Incorrect Assessment B Hurricane Florence 147

4

Correct Assessment, Correct Localization F Hurricane Florence 104
Correct Assessment, Partially Correct Localization A Hurricane Florence 22

Correct Assessment, Incorrect Localization B Mexico Earthquake 8
Incorrect Assessment D Midwest Flooding 429

Within each scenario, the user went through five stages as shown in Figure 6. We identified five
stages for the participant to go through so that we could observe the impact of each component
separately. Stage 1 shows participants’ baseline accuracy on the images presented in a given scenario
before they are shown any information from the AI. Stage 2 shows participants’ accuracy after they
are presented with the AI’s damage assessment (but before they can see the AI’s annotations or
explanation). Stage 3 adds localization, Stage 4 adds local explanations, and Stage 5 adds global
explanations .By isolating these types of explanations, we can quantify the individual impact as
if the AI presented them to the participant. These stages are the same across the four scenarios,
revealing the same type of information but for different cases. In some scenarios, the ground
truth label is incorrect or the ground truth localization is incorrect so our study is realistic like an
imperfect AI. We compare the reliance and performance in each stage across these scenarios to
identify how the type of information provided impacts the decision-making because the only factor
changing is the accuracy of the AI; the type of information provided remains unchanged.

At each stage, the participant was asked to provide their damage assessment and use a pinpoint
marker to identify exactly where they thought the damage was in the image. For each image, we also
asked the user to indicate how confident they felt in their damage assessment (on a 4-point Likert
scale from very unsure to very confident) and how helpful they thought the added information
was (on a 4-point Likert scale from very unhelpful to very helpful) when making their damage
assessment. Finally, we provided an optional text box to allow the user to briefly detail whether
and how they believed the AI assessment and explanations may have affected their own damage
assessment. Since this was optional, not all participants provided responses. The task took on
average 28.79 minutes (SDtime = 13.37 minutes).
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Disaster images
+ AI damage assessment + Localization

Disaster images

Disaster images + AI damage assessment

Disaster images
+ AI damage assessment + Localization

Disaster images
+ AI damage assessment + Localization

Fig. 6. The second study consisted of five stages. The five stages are shown four times, one time for each
scenario. Stage 1 shows the pre- and post-disaster image, with no information from the AI; Stage 2 adds
information by showing how the AI assessed the damage; Stage 3 adds visual annotations, highlighting
points or regions of the image where the AI thinks it is important to look; Stage 4 adds local text-based
annotations to elaborate on each visual annotation; and Stage 5 adds a global explanation detailing why the
AI made the damage assessment that it did. Each participant went through these five stages for each of the
four scenarios.

5.1.4 Data Selection Method. The satellite images and explanations presented to participants in
this study were selected from the responses from the first study. The curated set is available on
our GitHub site. One coder analyzed every response from the first study to evaluate the quality
of the image- and text-based annotations provided. The coder reviewed observations where the
participant’s damage assessment was correct, both coders from Study 1 agreed on the explanation
strategy, and the explanation strategy was a core explanation strategy from Study 1. From the
filtered observations, the coder mapped the image-based annotations into three categories:

• Correct Localization: The participant was able to identify the ground-truth position of the
damaged building with an image-based annotation.

• Partially Correct Localization: The participant’s image-based annotation included a por-
tion of the ground-truth position of the damaged building.

• Incorrect Localization: The participant’s image-based annotation does not include any
portion of the ground truth position of the damaged building.

After coding the annotations in each observation, the coder evaluated the quality of the text-
based annotations for observations where the participant’s damage assessment was correct. We
specifically selected observations that used only one explanation strategy to allow us to isolate the
effectiveness of each strategy by itself. We chose from observations that did not cite the annotations2
(66% of the observations and 63% of the participants did not cite annotations3) to limit potential
confusion in references and separate the impact of the text-based annotations from the global
explanations.

2As seen in the explanation in Figure 2
3See Figure 12 in Appendix A.2 for full results
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5.2 Results
We evaluated the core explanation strategies to identify whether and how these may have impacted
participants’ assessment accuracy and reliance on AI assessments. To address RQ2, we present
participants’ accuracy across the five stages for each explanation strategy and scenario in Figure 7.
Assessment accuracy is calculated by the percentage of participants that selected the ground truth
assessment of the damage. Localization accuracy is calculated by the percentage of participants
that placed the pinpoint on the ground truth damaged area.

Throughout the remainder of this section, we evaluate the impacts of a given explanation strategy
by examining the change in a given measure between Stage 5 (i.e., all AI outputs shown) and Stage
2 (i.e., AI damage assessment only). Where appropriate, we also examine changes between other
stages, for example, to understand the impacts of presenting text-based annotations over and
above visual annotations. We provide a detailed interpretation of our results below (see Table 6 in
Appendix Section B.3 for full results).

5.2.1 Causal explanation strategies mislead humans less. We found that, in scenarios where the AI
damage assessment was actually incorrect, causal explanations (strategy A) misled humans less than
other explanation strategies. An ANOVA for the incorrect assessment scenario (p < 0.001), indicated
a significant difference in the impacts that different explanation strategies have on assessment
accuracy. As shown in Table 3b, a post-hoc Tukey HSD test for this scenario revealed a statistically
significant difference in the Stage 5 - Stage 2 slope between explanation strategy A (involving a
causal argument to explain a building damage assessment) and all other core strategies. This may
suggest that humans are better at calibrating their reliance on AI assessments by reasoning about a
causal argument, versus by assessing other kinds of explanations. In line with this interpretation,
one participant who switched back their assessment to their initial belief stated, “[I] disagree with

(a) Difference between stage 2 and stage 5.
P-values from post-hoc Tukey HSD test for the
correct assessment, incorrect localization scenario
measuring localization accuracy from stage 2
compared to stage 5. There are statistically signif-
icant differences between strategies A to B and
D for localization accuracy.

Correct Assessment, Incorrect Localization Scenario
Metric: Localization Accuracy

Strategy Pairs Tukey HSD p-value

A - B 0.019

A - D 0.019

A - F 0.275

B - D 0.900

B - F 0.607

D - F 0.607

(b) Difference between stage 2 and stage 5.
P-values from post-hoc Tukey HSD test for the
incorrect assessment scenario measuring assess-
ment correctness from stage 2 compared to stage
5. There are statistically significant differences
between strategies A to B, D, and F for the partic-
ipant’s assessment correctness.

Incorrect Assessment Scenario
Metric: Assessment Accuracy

Strategy Pairs Tukey HSD p-value

A - B 0.008

A - D 0.035

A - F 0.001

B - D 0.900

B - F 0.900

D - F 0.662

Table 3. Post-hoc Tukey HSD tests for determining statistically significant differences between the partici-
pant’s localalization and assessment accuracy.
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Fig. 7. Assessment accuracy, localization accuracy, and the participants’ confidence. The facet on the y-axis
shows the four different scenarios that the participants were presented. The percent on the y-axis represents
the ratio of participants (a) that got the damage assessment correct, (b) that placed the pinpoint on the
damaged structure, and (c) the confidence level for correct assessments. The x-axis shows the five stages
described in Figure 6

the reasoning, but it convinced me that my initial assessment was correct”. In this case, the participant
inferred that poor explanations may imply poor accuracy for AI assessments.
In contrast to strategy A, the accuracy for all other explanation strategies decreased as partici-

pants’ switched their original correct assessments to agree with the AI’s incorrect assessment in
the incorrect assessment scenario. Strategy A shows a steep increase in accuracy from stage 3 to
stage 4 (Figure 7), suggesting that the local text-based annotations revealed in stage 4 may have
played a large role in helping participants calibrate their reliance on the AI.

5.2.2 Incorrect localizations within causal explanations could lead to incorrect rationalizations. In
cases where participants were shown a correct assessment but an incorrect localization from the
AI, causal explanations (strategy A) misled human localization more often than other explanation
strategies. AnANOVA for the correct assessment, incorrect localization scenario indicated a significant
difference in the impacts that different explanation strategies have on localization accuracy (p
< 0.01).4 A post-hoc Tukey HSD test revealed statistically significant differences in the Stage 5 -
Stage 2 slopes between explanation strategies B and D versus A (see Table 3a). Strategy A shows
a sharp drop in accuracy from stage 2 to 3 (Figure 7), suggesting that the presentation of local

4See Table 8 in the Appendix B.3 for detailed results.
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Table 4. Difference between stage 2 and stage 5. P-values from post-hoc Tukey HSD test for the incorrect
assessment scenario measuring assessment agreement from stage 2 compared to stage 5. There are statistically
significant differences between strategies A to B and A to F for the participant’s assessment agreement.

Incorrect Assessment Scenario
Metric: Assessment Agreement

Strategy Pairs Tukey HSD p-value

A - B 0.041

A - D 0.140

A - F 0.002

B - D 0.900

B - F 0.675

D - F 0.367

visual annotations, as part of a causal explanation, may have played a large role in encouraging
inappropriate reliance upon incorrect AI localizations.
Interestingly, the presentation of the incorrect localization in stage 3 resulted in several par-

ticipants changing the location of their pinpoint for strategy A, with a strong increase in overall
confidence (Figure 7; third row, middle column). In this case, participants could have associated
incorrect features (corresponding to the incorrect localization) with the correct damage assessment,
potentially influencing how they made damage assessments later on in the study.

5.2.3 Causal explanation strategies decrease over-reliance on AI. We found that, when shown
causal explanations (strategy A), humans relied less on the AI when the assessment was incorrect.
Drawing upon prior literature, we report multiple related behavioral measures in Figure 8 to better
understand participants’ reliance on AI (RQ3) [61, 67]:

• Assessment Agreement. How often participants’ assessments agree with the AI’s assessment.
• Change Assessment to Agree. How often participants choose to change their assessment to
agree with the AI’s assessment.

• Localization Agreement. How often participants agree with the AI’s localization of damage in
the image (based on the location of the participant’s pinpoint).

• Change Localization to Agree. How often participants choose to change the location of their
pinpoint to agree with the AI’s localization of damage.

An ANOVA for the incorrect assessment scenario showed a significant difference in the impact
that different explanation strategies had on assessment agreement (p < 0.05)5. A post-hoc Tukey
HSD test (Table 4) for this scenario revealed a statistically significant difference in the Stage 5 -
Stage 2 slope between explanation strategy A (causal explanation) and B (comparing before and
after features to explain a building damage assessment) as well as between explanation strategy A
and F (identifying the number of damaged structures to explain a building damage assessment).
For strategy A in the incorrect assessment scenario where the AI localization is correct, we

see a huge decline in assessment agreement when the text-based explanations are presented in
stage 4. These trends are also observed in Figure 7. The increase in disagreement with the AI in
stage 4 for strategy A could be a result participants judging that the causal arguments for the

5See Table 9 and Table 11 in Appendix B.3
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Fig. 8. Measurements to evaluate reliance on AI. The facet on the y-axis shows the four different scenarios
that the participants were presented. The percent on the y-axis represents the ratio of participants (a) that
agreed with the AI’s assessment, (b) changed their assessment to agree with the AI’s assessment, (c) that
agreed with the AI’s localization of the damage, and (d) that changed their pinpoint to agree with the AI’s
localization of the damage. The x-axis shows the five stages described in Figure 6

incorrect assessment actually do not make much sense. In contrast to strategies A and B, in the
incorrect assessment scenario, strategy F shows an increase in reliance according to all four reported
reliance metrics. For instance, before showing the AI’s localization in stage 3, 6.7% of participants
disagreed with the AI’s localization. However, after seeing the explanations in stages 3 and 4, 33%
of participants agreed with the AI’s localization. Participants were misled by explanation strategy F
to adopt the incorrect localization, resulting in a very low assessment accuracy as seen in Figure 7.

5.2.4 Strategy type is less important when the AI is accurate and explanations are high quality. We
found no significant differences in assessment accuracy or reliance across explanation strategy types
in the scenario when the AI assessment was correct. By contrast, as described above in Subsection
5.2.1, different explanation strategies had differential impacts on participants’ assessment accuracy
and reliance in scenarios where the AI was actually incorrect6.

6See Table 6 in Appendix B.3 for full results
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5.2.5 Pre- and post-disaster comparisons do not have a significant impact. While the most prevalent
type of explanation strategy that participants used was a comparison between the pre- and post-
disaster images, we did not observe that this type of explanation significantly impacted task accuracy
or reliance on AI across all scenarios.

5.2.6 Participants perceive explanations as most helpful when the AI is accurate. Each stage in our
study provided additional information from the AI to help the user make their damage assessment.
Figure 6 shows the additional information that was presented to the users in each stage. In every
stage except for Stage 1 (which does not present any information from the AI), we asked the user
how helpful the additional information was in making their damage assessment. After assessing
the damage, participants were asked to assess how helpful they found the additional information in
each stage, using a 4-point Likert scale. Based on the additional information shown at a given stage
(i.e., AI assessment, visual annotations, visual and text-based annotations, or global explanations),
we asked participants questions such as, “How helpful was the AI assessment?” or “How helpful
were the annotations?”. Overall, our results suggest that participants generally found explanations
most helpful in scenarios where the AI assessment and localization were correct. Our results also
suggest that participants generally found explanations less helpful when the AI’s localization was
incorrect or when the localization is correct and the assessment is incorrect. Figure 13 in Appendix
B.3 describes more specific trends for this metric.

5.2.7 Qualitative Analysis: Impact of AI Assessment and Explanations. In this subsection, we report
on participant responses to an optional question that was visible across every stage, asking partici-
pants whether and how they believed the AI affected their assessment for that stage. Since this
question was optional, we did not have data for all participants. One coder analysed the responses
to get a general understanding of the themes that emerged from the optional question responses.
Overall, participants stated that the AI either confirmed their initial damage assessment or, in the
scenario where the localization was incorrect, that the AI did not highlight meaningful regions.
Below we present examples of participant quotes, illustrating trends that emerged for each scenario.

When correct, the “AI” increased participant’s confidence. Among participants who se-
lected the correct damage assessment from the very beginning in the correct assessment, correct
localization scenario, several noted that seeing the AI’s assessment and explanations increased
their confidence in their original decision. Participants who initially selected an incorrect damage
assessment also described why they changed their assessment to match the AI’s. For example, one
participant who had originally selected the incorrect damage assessment changed to agree with the
AI’s assessment because “...[the AI] came to the same conclusion and description of damage as me.”.
A couple of participants reported that they chose to agree with the AI’s assessment because the AI
pointed out specific damage that they previously had not noticed. Interestingly, some participants
noted that certain explanations were similar to their own line of reasoning. Four out of fifteen
participants noted that the AI provides descriptions that match their own thought process for
strategy B and two out of fifteen participants for strategy D.

When partially correct, participants critiqued the “AI”. By contrast, in the correct assess-
ment, partially correct localization scenario, very few participants made comments about the AI
reinforcing their assessment or providing similar reasoning. Instead, participants focused on point-
ing out pieces of information that the AI did not mention or realizing a damaged area/structure that
they previously did not see. For example, one participant who originally had selected the incorrect
assessment and later agreed with the AI said, “It appears that I was looking at the wrong thing, the
section that the AI has pointed out does have minor damage”. Another participant pointed out the
flaws in the AI’s assessment saying, “[The AI] was correct about the damages. AI didn’t notice the
homes destroyed with what looks like only a foundation of a house after the disaster”.
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In the correct assessment, incorrect localization scenario, participants were split between agreeing
with or not agreeing with the AI’s localization. Four out of fifteen participants for explanation
strategy A, B, and D and three out of fifteen participants for explanation strategy F pointed out
that the AI did not identify any meaningful regions. One participant said, “[The] AI annotation is
over an area that did not have damaged structure”. However, a few participants were misled by the
incorrect annotations, resulting in behaviors such as moving the location of their pinpoint to agree
with the AI’s localization of damage or changing their damage assessment. One participant stated,
“[The AI] helped to direct the pin location instead of a general area”. Three participants for strategy F,
three for strategy D, and two for strategy A made comments about the AI reinforcing their damage
assessment and increasing their confidence, despite the AI being incorrect.

When incorrect, the “AI” incorrectly reassured or influenced participants. For example,
when the AI’s damage assessment was incorrect and the participant’s initial damage assessment
matched the AI’s assessment shown in Stage 2, several participants were incorrectly reassured by
this and noted that the AI reinforced their original assessment. One participant said, “It validated
and reinforced my assessment. It gave me more confidence”. However, this participant changed their
assessment to disagree with the AI and agree with the ground truth in stage 4 and stage 5 when
shown detailed explanations from the AI about the annotations and overall assessment. The AI’s
incorrect assessment not only reassured participants who originally assessed incorrectly; it also
incorrectly influenced participants who originally assessed correctly. In one case when the AI
predicted ‘destroyed’ for an image that only presented ‘minor damage‘, the participant switched their
correct assessment in Stage 1 to agree with the AI in stage 2 noting, “The AI made me reconsider so
I looked even harder for a destroyed building”. Interestingly, one participant that originally assessed
the damage correctly and switched to agree with the AI’s incorrect assessment then switched back
to their original assessment because they disagreed with the reasoning of the AI’s local explanations
in Stage 4 stating, “[I] disagree with the reasoning, but it convinced me that my initial assessment was
correct”. The reasoning presented in the text-based annotations helped the participant understand
the limitations of the AI. This example reflects a broader trend of strategy A (causal explanations)
helping participants judge when not to agree with the AI in the incorrect assessment scenario, as
shown in Figure 7.

6 DISCUSSION
Through a sequence of two online studies, we identified explanation strategies that humans use to
describe their decisions for a visual building damage assessment task and evaluated the impact of
each explanation strategy on task accuracy and reliance on AI . Our findings offer insights into
the kinds of explanation strategies humans employ when providing rationales for their decisions,
in the context of visual decision-making tasks. We introduce a new approach for exploring the
impacts that prospective explainable AI techniques might have on human-AI decision-making,
by presenting participants with different types of human-generated explanations, framed as AI
explanations. Using this approach, we investigated the impacts of different human explanation
strategies on human accuracy and reliance upon AI-based assessments.
Through a thematic analysis, we identified strategies humans use to explain their decision for

a visual building damage assessment task. The most prevalent strategy humans used in their
explanations was comparing the pre- and post-disaster images. While this explanation strategy
was the most prevalent strategy that we observed in the responses, some caution is needed in
interpreting this observation, as this pattern may be at least partially explained by the pre- and
post-disaster images side by side.

Overall, we found that compared with other explanation strategies, causal explanations misled
humans less and served to decrease over-reliance on AI damage assessments. A wave of recent
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empirical results indicates that presenting AI explanations can often backfire—failing to improve or
even harming human-AI decision-making in practice [6, 24, 28, 31, 33, 49]. For example, presenting
explanations has sometimes been shown to promote over-reliance on AI recommendations, whether
by lulling humans towards undeserved trust or by inducing cognitive overload [6, 33, 49]. In the
context of this prior literature, our results help motivate the need to empirically investigate the
impacts of different types of explanations on human-AI decision-making, across different real-world
tasks and contexts. As others in the field have highlighted, AI explanations are not a monolith: there
are many possible kinds of explanations, which may have different (potentially context-dependent)
effects on human-AI decision-making [40, 43, 64].
In our study, we found that causal explanations had unique impacts among the explanation

strategies we investigated: in the context of erroneous AI damage assessments, causal ex-
planations empowered humans to correctly second-guess the AI. Our findings suggest that
humans are better at calibrating their reliance on AI assessment by reasoning about causal ar-
guments, versus by assessing other kinds of explanations. This interpretation aligns with prior
research on human causal cognition, which suggests that humans are predisposed to reason about
the world in a causal, rather than purely statistical or associative manner. Indeed, some errors
and fallacies that have been observed in human probabilistic or statistical reasoning can be under-
stood as symptoms of this tendency: instances where humans attempt to use causal reasoning and
assumptions in situations where these do not apply [5, 23, 32]. For these reasons, it may be that
humans are better able to spot faulty reasoning in causal explanations versus other explanation
strategies.
Although causal explanations helped humans identify erroneous AI assessments of the extent

of damage, we found that causal explanations led humans astray when the AI incorrectly
identified the location of the damage. Interestingly, our findings suggest that participants may
have updated their own line of reasoning after seeing only the visual annotation components of
causal explanations, presented in Stage 3. The presentation of visual annotations did not have
this effect for other explanation strategies, suggesting that the types of visual annotations that
human explainers generate in the context of causal explanations are in themselves more persuasive
than those associated with other strategies. It may be, for example, that the visual annotations
associated with human-generated causal explanations tend to visually highlight potential causal
factors, which influence human damage localization.

Interestingly, we found that in our context of building damage assessment from satellite imagery,
causal explanations were most helpful in improving decision-making in cases where the AI’s
damage assessment was incorrect. By contrast,when the AI’s assessment was correct, the type
of explanation strategy presented did not significantly impact participants’ accuracy or
their reliance on AI assessments. This suggests that causal explanations may be particularly
valuable in settings where AI systems are likely to be highly imperfect, including high uncertainty
settings or cases where an AI system is particularly vulnerable to blindspots [9, 30, 34].

6.1 Limitations
In this section, we briefly highlight key limitations across both of our studies:

6.1.1 “Who is the explanation for?” In Study 1, participants were asked to generate annotations
and rationalizations for their damage assessment with the goal of convincing another person
that their answer is correct. However, recent discussions in the human-centered explainable AI
literature emphasize the importance of tailoring explanations to particular stakeholder groups
(i.e., model developers, business owners, frontline decision-makers, decision subjects, regulatory
bodies), who may have different use cases for AI explanations or different expertise through which
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to interpret explanations (e.g., [28, 38]). In our study, we asked participants to convince “another
person.” However, it is possible that presenting a more specific prompt in Study 1 (e.g., explicitly
specifying that the user of the explanation would be another participant on the Prolific platform)
would have yielded a different distribution of explanation strategies.

6.1.2 Potential Effects of Image Selection on the Identified Human Explanation Strategies. We filtered
the xBD dataset to only use image pairs with one damaged structure or multiple damaged structures
with the same damage assessment. This constraint limited the number of image we had represented
in the dataset for each natural disaster. This also could have impacted the distribution of explanation
strategies that we observed in our study. For instance, it is unclear how and to what extent the
explanation strategies might differ when participants are presented with images including several
damaged regions with different damage assessments.

6.1.3 Instructed to annotate, not localize damage. The participants in Study 1 were not explicitly
instructed to annotate the specific building they thought was damaged. They were only advised to
mark evidence relevant to the level of damage that they wanted to argue for. Therefore, it is possible
that some Study 1 participants could have annotated evidence of damage to surrounding areas,
without annotating the specific building that they believed was damaged. When selecting images
for the correct assessment, correct localization scenario in Study 2, we only considered observations
in which a damaged building was clearly marked. This limited the number of observations we
could choose from for the correct assessment, correct localization scenario.

6.1.4 Availability of Explanations from Study 1. We wanted to evaluate different explanation
strategies and different variations of explanation strategies. However, not all explanation strategies
were represented equally for each image set7. It is possible that participants were naturally inclined
to compare the pre- and post-disaster images due to the design of the interface showing the two
images side by side. Participants in study 1 were also limited with the tools that we provided in the
interface which could have hindered the type of explanation strategies that they would employ.
In addition, in order to evaluate one explanation strategy at a time in Study 2, we were limited to
observations from Study 1 that only used one explanation strategy. Due to these constraints, most
of the image pairs within each scenario are different for each explanation strategy. This meant
that it was not feasible to assess the impacts of particular explanation strategies independently of
particular image pairs. Thus, to control for baseline differences across image pairs (i.e., differences
at Stage 1, before any AI outputs were shown to participants), our analyses compared changes in
particular metrics (e.g., accuracy and confidence) across stages, rather than comparing absolute
values. Nonetheless, it is possible that we were still unable to observe certain effects due to
differences across image pairs. For example, if participants’ baseline accuracy for a given image
pair was near 100% for a given scenario8, then this may have masked explanation strategy effects
that we would have otherwise observed (i.e., due to a ceiling effect).

Some participants noted in the end-of-task survey that some of the images were low quality or
hard to decipher due to the satellite images being taken at different times of the day or different
seasons. Unfortunately, the quality of the images is typical in this domain and also a limitation of
the open-source data set [21]. Participants struggling with these images could also be due to the
fact that they are not domain experts and not used to analyzing lower quality satellite imagery.
Therefore, we acknowledge that using participants from an online crowdsourcing platform may
impact the generalization of our findings to the domain experts.

7See table 10 in Appendix A.2 to see the distribution of explanation strategies from Study 1.
8See assessment accuracy for correct assessment, correct localization scenario in Section 5.2, Figure 7
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7 FUTUREWORK
There are many opportunities for further work to build upon our bottom-up taxonomy of human
explanation strategies. We plan to prepare and release an open-source dataset mapping explanation
strategies to specific examples of human explanations that we collected in our study. This dataset
will allow researchers to explore ways to generate explanations that associate with a certain
explanation strategy for image classification tasks. Generating these explanation strategies will
allow researchers to evaluate to what extent the explanation strategies impact a decision makers’
accuracy and reliance on AI at a larger scale.

Future work should consider running Study 2 at a larger scale. As discussed in our Limitations,
in this study we were only able to evaluate one explanation strategy per image set. Future studies
should consider evaluating all four explanation strategies on the same image, to better separate out
potential impacts of particular image sets versus explanation strategies. Furthermore, while this
study focused on crowdworkers, researchers should consider recruiting subject matter experts to
see how different explanation strategies impact their workflow and whether they have a preference
for a particular strategy. Overall, XAI for building damage assessment and disaster relief remains a
critical yet underexplored research area. Future work is greatly needed to better understand how
AI-based decision supports can be designed effectively for this context.

Since the core explanation strategies we identified can be generalized to other visual decision-
making domains, such as radiology, we encourage researchers to explore the impact that visual
annotations paired with text-based annotations have on human accuracy and reliance on AI in a
broader range of contexts. For example, in medical imaging, the majority of current explainable
AI techniques focus on providing saliency maps [50]. The kinds of human-generated visual and
text-based explanations presented to participants in our study are much richer by comparison.

8 CONCLUSION
Explainable AI techniques are increasingly being evaluated to understand how they aid practitioners
during the decision making process. Findings from numerous user studies call for a more human-
centered approach to explainable AI for human-AI decision making. To address the need for
human-centered explainable AI and understand its impact on the decision making process, we
conducted a series of two studies to understand the types of explanation strategies that humans use
during visual decision-making tasks and to understand how presenting these explanation strategies
(as if they were generated by AI) to human decision-makers impacts their accuracy and reliance
upon AI.

We identified four core explanation strategies in the context of building damage assessment from
satellite imagery: causal explanations (Strategy A), before-and-after comparison (Strategy B), the
proportion of structure damage (Strategy D), and the number of structures damaged (Strategy F).
The most prevalent explanation strategy was comparing the pre- and post-disaster images, however
this observation could be confounded by the design of the interface. Based on those four core
explanations, we evaluate whether and how they impact humans’ assessment accuracy and reliance
on AI assessments. Our results show that causal explanations can help humans appropriately
calibrate their reliance on AI damage assessments in cases where the AI is incorrect. However,
causal explanations can also lead humans astray when the AI localization is incorrect. As causal
explanation strategies are applicable across a broad range of real-world domains beyond damage
assessment or other visual decision-making tasks, our results suggest new guidance on how to
make explanations more useful and effective in practice.
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A APPENDIX - STUDY 1
A.1 Study 1 Image Set
The image sets used in Study 1 is provided on our GitHub page9. The training data used in both
Study 1 and Study 2 can found here10 and the main data used in Study 1 can be found here11.

A.2 Study 1 Detailed Analyses
The accuracy for each image set is presented in Figure 9. Some of the images were harder for the
participants to determine the correct assessment than others. The two image sets with the highest
accuracy are wildfires where the building in the image was completely burnt to the ground. The
two hardest images, Midwest Flooding 429 and Mexico Earthquake 8, for participants to assess
contained multiple structures in the image making it slightly more difficult for them to find the one
structure that was damaged. It is also notable that none of the participants had correct localization
for those two images.
Two coders reviewed the results from study 1 and assigned strategies to every response. Some

responses had multiple strategies assigned. The differences between the number of strategies the
two coders assigned for each sub-strategy are shown in Figure 10. As seen in Figure 11, when the
participant got the assessment correct, the most prevalent code across all image sets is was code B.
The other top prevalent codes include codes A, D, and F.

9https://human-explanations-cscw2023.github.io/
10https://human-explanations-cscw2023.github.io/TrainingData.html
11https://human-explanations-cscw2023.github.io/MainData/MainData.html
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Fig. 9. Accuracy for each image set from study 1. Accuracy is calculated by the number of participants who
got the damage assessment correct out of all participant. The images were shown in a random order to
minimize ordering effects.
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The percent of observations per image set where participants cited their local explanations
within their global explanations seen in Figure 12.

B APPENDIX - STUDY 2
Detailed documentation for this study can be viewed on our GitHub site here12. Our interface
codebase is available to those who wish to replicate our study (link hidden for anonymity). Sections
below point to more specific pages on the GitHub site for easier navigation as well as interpretations
of more detailed analyses.

B.1 Training Phase 2 Data
Details for how the data for the second training phase can be found on our GitHub site here13. This
data was solely used to help participants get familiarized with the task and the new information
they are provided in each stage.

12https://human-explanations-cscw2023.github.io/
13https://human-explanations-cscw2023.github.io/WalkthroughData.html
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Fig. 11. Number of codes identified for each image set for participants that selected the correct damage
assessment and for each image set for participants that selected the incorrect damage assessment . Some
participants included multiple codes for an image set.

B.2 Representative Explanations
The method for the data set used in the second study is detailed in Section 5.1.4. More detailed
documentation on the selection method can be found here14 and the final data set used for the
study can be seen here15.

B.3 Study 2 Detailed Analyses
Below we provide all of the p-values from our ANOVA tests.
We calculated similar ANOVA tests to determine if the change in the participants’ localization

accuracy between stage 1 and stage 5 was statistically significant, however, no scenario had a
p-value less than 0.05 (Table 7 in Appendix Section B.3). This is to be expected as the participants’
localization accuracy throughout the stages in the correct assessment, incorrect localization scenario
had very small increases/decreases.

B.3.1 Humans did not significantly change their localizations to agree with the AI. Whether the AI’s
localization was correct or incorrect, we do not find any significant difference in the impacts that
different explanation strategies have on localization agreement. However, an ANOVA for the correct
assessment, partially correct localization scenario (p < 0.05) indicated a difference in the impacts
that different explanation strategies have on localization agreement16. A post-hoc Tukey HSD test
14https://human-explanations-cscw2023.github.io/representativedataset.html
15https://human-explanations-cscw2023.github.io/RepresentativeExplanations/Representative%20Explanations%20a30337b3cc864808882c
0898ba4a537c.html
16See Table 12 in Appendix B.3 for full results.
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Fig. 12. Percent of observations per image set where participants cited local explanations.

Table 5. P-values from ANOVA single-factor test for each scenario for participant’s assessment accuracy
between stage 1 and stage 5.

Metric: Assessment Accuracy

Scenario ANOVA p-value

Correct Assessment, Correct Localization 0.005

Correct Assessment, Partially Correct Localization 0.24

Correct Assessment, Incorrect Localization 0.46

Incorrect Assessment 0.67

Table 6. P-values from ANOVA single-factor test for each scenario for participant’s assessment accuracy
between stage 2 and stage 5.

Metric: Assessment Accuracy

Scenario ANOVA p-value

Correct Assessment, Correct Localization 0.511

Correct Assessment, Partially Correct Localization 0.089

Correct Assessment, Incorrect Localization 0.456

Incorrect Assessment 0.001
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Table 7. P-values from ANOVA single-factor test for each scenario for participants localization accuracy
between stage 5 and stage 1.

Metric: Localization Accuracy

Scenario ANOVA p-value

Correct Assessment, Correct Localization 0.30

Correct Assessment, Partially Correct Localization 0.40

Correct Assessment, Incorrect Localization 0.50

Incorrect Assessment 0.31

Table 8. P-values from ANOVA single-factor test for each scenario for participants localization correctness
between stage 5 and stage 2.

Metric: Localization Accuracy

Scenario ANOVA p-value

Correct Assessment, Correct Localization 0.289

Correct Assessment, Partially Correct Localization 0.400

Correct Assessment, Incorrect Localization 0.01

Incorrect Assessment 0.273

Table 9. P-values from ANOVA single-factor test for each scenario for participant’s assessment agreement
between stage 1 and stage 5.

Metric: Assessment Agreement

Scenario ANOVA p-value

Correct Assessment, Correct Localization 0.005

Correct Assessment, Partially Correct Localization 0.24

Correct Assessment, Incorrect Localization 0.46

Incorrect Assessment 0.026

revealed statistically significant differences in the Stage 5 - Stage 1 slope between explanation
strategy B and F.

Explanation strategy F shows a positive trend from stage 2 to stage 4 for the assessment agreement
and change assessment to agreemetrics in the correct assessment, partially correct localization scenario.
33% of participants who saw the AI’s localization in stage 3 for explanation strategy F changed
their localization to agree with the AI’s localization. However, the localization accuracy for strategy
F in Figure 7 remained approximately 25% for all of the stages showing the partially incorrect
localization did not help the participant identify the localization correctly.

Figure 13 visualizes the responses to the helpfulness question (on 4-point Likert scale from very
unhelpful to very helpful) for every code, stage, and scenario.
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Table 10. Difference between stage 1 and stage 5. P-values from post-hoc Tukey HSD test for the incorrect
assessment scenario measuring assessment agreement change from stage 1 compared to stage 5. There is a
statistically significant difference between strategies A and F for the participant’s assessment correctness.

Incorrect Assessment Scenario
Metric: Assessment Agreement

Strategy Pairs Tukey HSD p-value

A - B 0.871

A - D 0.264

A - F 0.023

B - D 0.667

B - F 0.132

D - F 0.667

Table 11. P-values from ANOVA single-factor test for each scenario for participant’s assessment agreement
between stage 2 and stage 5.

Metric: Assessment Agreement

Scenario ANOVA p-value

Correct Assessment, Correct Localization 0.005

Correct Assessment, Partially Correct Localization 0.24

Correct Assessment, Incorrect Localization 0.46

Incorrect Assessment 0.003

Table 12. P-values from ANOVA single-factor test for each scenario for participants localization agreement
between stage 5 and stage 1.

Metric: Localization Agreement

Scenario ANOVA p-value

Correct Assessment, Correct Localization 0.511

Correct Assessment, Partially Correct Localization 0.020

Correct Assessment, Incorrect Localization 0.836

Incorrect Assessment 0.644
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Table 13. Difference between stage 1 and stage 5. P-values from post-hoc Tukey HSD test for the correct
assessment, partially correct localization scenario measuring localization agreement from stage 1 compared
stage 5. There is a statistically significant difference between strategies B and F for localization agreement.

Correct Assessment, Partially Correct Localization Scenario
Metric: Localization Agreement

Strategy Pairs Tukey HSD p-value

A - B 0.90

A - D 0.90

A - F 0.09

B - D 0.90

B - F 0.02

D - F 0.09

Table 14. P-values from ANOVA single-factor test for each scenario for participants localization agreement
between stage 5 and stage 2.

Metric: Localization Agreement

Scenario ANOVA p-value

Correct Assessment, Correct Localization 0.511

Correct Assessment, Partially Correct Localization 0.084

Correct Assessment, Incorrect Localization 0.836

Incorrect Assessment 0.071
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Fig. 13. Visualizing how helpful explanations in each stage and scenario were to participants for every code.
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