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Abstract

As deep neural networks make significant advances in
computer vision tasks, they are being deployed in several
high-stakes domains. However, these models are not al-
ways semantically meaningful to humans as traditional in-
terpretability techniques are quantitatively driven. There-
fore, we explore how to generate saliency maps that are
more similar to human attention without significantly sac-
rificing the model performance. We conduct an empirical
study to understand how current object detection models
compare to human centered saliency maps. Additionally,
we present different data augmentation techniques such as
Selective Erasing and Selective Inpainting along with the
prevelant non-trivial transforms to evaluate the impact of
human-centered data augmentation. With less than 3%
mAP difference, we observe that data augmentations that
are derived from predicted human attention improves the
MAE and IoU between the model saliency and predicted at-
tention. Visualization and more details are at here.

1. Introduction
Artificial intelligence (AI) is increasingly being built for

and deployed in high-stakes domains such as prostate can-
cer detection from medical imagery [5], disaster relief ef-
forts [7], and self-driving cars. However, these models are
often treated as ”black-boxes” and are not interpretable to
people that collaborate or interact with them [1]. There-
fore, the interpretability and accuracy of these models are
equally important to calibrate decision-makers reliance on
AI and improve human-AI collaboration.

With explainability and interpretability of AI becoming
increasingly important, machine learning (ML) researchers
designed a wide range of techniques from visualizing what
the model has learned from an entire dataset, known as
feature visualizations [15], to visualizing the pixels or re-
gions of an image that activated a particular class predic-
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tion, known as class activation maps [18]. While these tech-
niques are all derived quantitatively from the model, they
are not always semantically meaningful to humans or even
highlight the correct region in the image despite a correct
prediction, known as spurious correlations [16]. As a result,
human-computer interaction (HCI) researchers have been
investigating how to make explainability techniques more
interpretable by humans known as human-centered explain-
able AI (HCXAI) [10]. However, few works have explored
HCXAI techniques for object detection models.

Our primary research questions are the following:

• How do current state-of-the-art object detection mod-
els compare to human attention?

• Can data augmentation techniques make saliency maps
more similar to human attention without significantly
sacrificing model accuracy?

We address these two research questions through two
studies. First, we conduct a small empirical study to under-
stand how current state-of-the-art object detection models
compare to human attention. In the second study, we evalu-
ate the impact of novel human-centered, data augmentations
on deep neural networks (DNNs) saliency maps. Our novel
contributions include (1) presenting two novel data augmen-
tation techniques called Selective Erasing and Selective In-
painting that can be used for augmenting images for image
classification and object detection models; and (2) evaluat-
ing the impact of different data augmentation techniques on
saliency maps generated by Faster R-CNN.

2. Related Works
With novel interpretability techniques increasingly being

developed, some researchers are taking a cognitive science
approach to interpretability in order to understand how hu-
man attention compares to deep learning models. One study
compares human attention to DNNs for segmentation, ac-
tion recognition, and classification tasks [9].

Recently, Boyd et al., proposed a novel loss function
that uses human annotations [4]. This loss function is de-
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signed to penalize the model during training for generating
saliency maps that are significantly different from the hu-
man saliency maps. The same authors just recently showed
that human annotations can improve the generalization of a
DNN [3]. For both of these studies, the authors had to col-
lect ground truth annotations from human subjects in order
to make the loss function which does not generalize well for
other models or domains.

Instead of continuously having to collect human anno-
tations, the MIT/Tuebingen Saliency Benchmark has de-
signed a challenge for saliency prediction models [8]. For
example, the DeepGazeIIE saliency prediction model is cur-
rently the best performing saliency prediction technique
compared to gold standard metrics [12].

3. Methods
We conducted two studies in order to address our re-

search questions. Below, we describe each study and how
the second study uses results from the first study.

3.1. Empirical Study

We conducted an empirical study to gain an under-
standing of which state-of-the-art object detection models
currently generate saliency maps similar to human atten-
tion. We evaluated and compared saliency maps gener-
ated by seven different object detection models available
on PyTorch to human attention maps and predicted hu-
man eye-fixations. To obtain the human attention maps, we
used the human attention maps for PASCAL2012 from the
ML-Interpretability-Evaluation-Benchmark [13]. To obtain
predicted human eye-fixations, we used the DeepGazeIIE
saliency prediction model [11]. The specific state-of-the-art
object detection models we evaluated and compared to the
human attention maps and predicted eye-fixations include
YOLOv5, Faster R-CNN with a ResNet-50 FPN backbone,
SSD with a VGG backbone, SSD with a MobileNet back-
bone, Mask R-CNN, RetinaNet, and DETR.

3.1.1 Experiment Details

We generated a saliency map for every single image that had
an associated human attention map (ground truth saliency)
from the ML-Interpretability-Evaluation-Benchmark [13].

Each image was resized to 512 x 512 before being eval-
uated on by the model. The saliency map for the object
detection model is generated using the EigenCAM method
[14] from the PyTorch library for CAM methods [6]. The
saliency map was generated using the last feature layer in
each model (layer 4 in the backbone). Once the saliency
map from the object detection model is generated, the mean
absolute error (MAE) was calculated between the gener-
ated saliency map and the human attention map. The
MAE is also calculated between the generated saliency map

Figure 1. Example of selective erasing and selective inpainting.

and the predicted human eye-fixations (produced from the
DeepGazeIIE model [12]).

While the MAE to some extent can reveal how similar
the saliency maps are, we also calculate intersection over
union (IoU) between the top 90% salient pixels of the gen-
erated saliency map and the top 90% salient pixels from the
human attention map/predicted human eye-fixation. Cal-
culating the IoU can help reveal whether the most salient
region identified by the model and the humans align [2].

3.2. Data Augmentations

Data augmentation for object detection is more complex
than that of image classification tasks because of the associ-
ated bounding boxes for each object. With this in mind, we
designed three different data augmentation techniques: se-
lective erasing, selective inpainting, and non-trivial trans-
formations. Below, we define and provide examples of each
of these data augmentations.

Selective Erasing. The goal of selective erasing is to get
rid of potential spurious patterns, patterns that the model
has learned to associate with a label even though it does not
represent that label. In order to augment images using se-
lective erasing, we send the image through Faster R-CNN
and use EigenCAM [14] to generate the saliency map from
the layer 4 in the backbone. We then send the image through
the DeepGazeIIE model [12] to generate the predicted eye-
fixations map. We calculate the intersection over union
(IoU) between the two saliency maps using a 90% thresh-
old. If the IoU is below 0.1, meaning the two saliency maps
are extremely different from one another, then we erase the
top 2.5% salient pixels identified from the Faster R-CNN
saliency map from the original image. We identified 6476
images that met this criteria. An example of this process
and the outcomes from each step are shown in Figure 1. We
chose the top 2.5% because these pixels would most likely
make up the core regions of a potentially spurious region.

Selective Inpainting. The selective inpainting augmenta-
tion follows the same steps as selective erasing and then
inpaints the erased image. To inpaint the top 2.5% salient
pixels as denoted by Faster R-CNN, we send the selec-
tively erased image and mask into an untrained neural net-
work which learns the pixels by minimizing the loss func-
tion [17]. We used 4001 iterations with an untrained ResNet
to inpaint the erased regions in each image. We augmented



Figure 2. Sample of some non-trivial augmentations used.

6476 images and replaced those images in the original PAS-
CAL VOC 2012 to make up the final augmented dataset.

Non-trivial Transformations. To improve the model
generalization, we apply the following augmentation tech-
niques. In our work, we do experiments of bounding box
geometric augmentation, color augmentation, and geomet-
ric augmentation. Each image in the dataset was augmented
only once with a random augmentation. A subset of aug-
mentations considered are shown in Figure 2. This was to
ensure we had the same amount of data to fine-tune on as
the other augmentation techniques.

3.3. Experiment Design

We gather a baseline to compare our three different data
augmentations against. We fine-tuned Faster R-CNN on the
PASCAL VOC 2012 training set and save the model to later
evaluate it the our PASCAL VOC 2012 test set. During
evaluation, we calculate the mean average precision (mAP)
at IoU of 0.5. We also calculate the MAE and IoU between
the saliency maps generated by the saved model and the
predicted eye-fixations. We again calculate those metrics
for the saliency maps generated by the model and the human
attention masks.

For evaluating the impact of data augmentation, we cre-
ated three different augmented PASCAL VOC 2012 train-
ing sets, one for each augmentation. Then, we sepa-
rately fine-tuned the pre-trained Faster R-CNN on each aug-
mented dataset. We do the same metric calculations as we
did for the baseline model (mAP, IoU, and MAE).

For all fine-tuning, we used the following training pa-
rameters: 5 epochs, learning rate of 0.005, SGD optimizer
with momentum of 0.9 and weight decay of 5e-4, and the
StepLR scheduler with a step size of 2 and a gamma of 0.1.

4. Results
We present results from our empirical study and our

main experiment which evaluates the impact of different

data augmentation techniques. The empirical study was
done to get a glimpse at how current saliency maps from
state-of-the-art models compare to predicted and ground
truth human attention. The main experiment extends the
empirical study by evaluating the impact of different data
augmentation techniques on the saliency maps.

4.1. Empirical Study

We compared the saliency maps from the models and the
predicted eye-fixations as well as human attention masks
for a subset of PASCAL VOC 2012 (898 images). This
subset was determined based on the PASCAL VOC 2012
images that had a ground truth human attention map in the
ML Interpretability Evaluation Benchmark. We calculated
the mean absolute error (MAE) and intersection over union
(IoU) for each model. The MAE (mean absolute error) is
preferred to be close to 0; the IoU (intersection over union)
is preferred to be close to 1. We calculate IoU using the top
90% salient regions.

We observed that Faster R-CNN with a ResNet50 back-
bone generated saliency maps are most similar to the pre-
dicted eye-fixations and the human attention masks in terms
of MAE with values of 0.1700 and 0.1145. In terms of IoU,
the SSD with a VGG backbone generated saliency maps are
most similar to the predicted eye-fixations and human atten-
tion masks with values of 0.2474 and 0.3225.

A top preforming model is identified in terms of MAE
because this metric is not variable based on a threshold like
IoU. We selected the top performing model for our main
experiment to focus on the impact of the augmentations for
one model instead of comparing across different models.
Since Faster R-CNN performed the best for MAE on PAS-
CAL VOC 2012, we use this model in our main experiment.

4.2. Main Experiment

A pre-trained Faster R-CNN is fine-tuned on each data
augmentation technique and then evaluated on the test im-
ages. We calculate mAP to understand the performance of
each model and we also calculate MAE along with IoU be-
tween the saliency maps generated by the model and the
predicted eye-fixations or human attention masks.

The Faster R-CNN generated saliency maps that were

COMPARED TO PREDICTED EYE-FIXATIONS

AUGMENTATION MAP MAE IOU

SELECTIVE ERASING 0.754 0.1560 0.1878

SELECTIVE INPAINTING 0.763 0.1552 0.1863
NON-TRIVIAL 0.781 0.1581 0.1762

NO AUGMENTATION 0.787 0.1575 0.1823

Table 1. Faster R-CNN fine-tuned on PASCAL VOC 2012. The
mAPs reported are for IoU = 0.5.



COMPARED TO HUMAN ATTENTION MASKS

AUGMENTATION MAP MAE IOU

SELECTIVE ERASING 0.754 0.1561 0.1878

SELECTIVE INPAINTING 0.763 0.1572 0.1863

NON-TRIVIAL 0.781 0.1600 0.2676

NO AUGMENTATION 0.787 0.1583 0.2688

Table 2. Faster R-CNN fine-tuned on PASCAL VOC 2012. The
mAPs reported are for IoU = 0.5

more similar to predicted eye-fixations in terms of MAE
when using selective inpainting augmentation and in terms
of IoU when using selective erasing. Table 1 shows that
these augmentations impacted the mAP by at most 3%.
When comparing the generated saliency maps to the hu-
man attention masks from the ML Interpretability Evalu-
ation Benchmark [13], only selective erasing and selective
inpainting improved the MAE as shown in Table 2.

5. Conclusion

Overall, we conduct two studies to understand how cur-
rent object detection models compare to human attention
and what techniques might improve them. We evaluate
three novel data augmentation pipelines to see if they help
saliency maps become more human centered without signif-
icantly sacrificing the accuracy. With at most 3% mAP dif-
ference, we observe that data augmentations that are derived
from predicted human attention can improve the mean ab-
solute error and intersection over union between the model
saliency and predicted attention. In the experiment, se-
lective erasing and selective inpainting augmentations only
used the predicted eye fixations to create the augmented
training dataset which could explain the null results shown
in Table 2. Future works should create a separate aug-
mented dataset using the human attention masks instead of
predicted eye-fixations.
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